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“Probability is expectation founded upon partial knowledge. A

perfect acquaintance with all the circumstances affecting the oc-

currence of an event would change expectation into certainty, and

leave neither room nor demand for a theory of probabilities."

— Boole, George, An Investigation of the Law of Thought
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Abstract

The usage of Point Distribution Models (PDMs) is very attractive, espe-

cially in medical imaging analysis. This is due to their simplicity, robustness,

and the relatively low number of data items needed for their construction.

When a PDM is used to analyze a novel image one can automatically extract

measures from it, the likelihood of the target shape can be estimated or it can

be used to complete partial observations. The most important aspect of con-

structing PDMs and analyzing novel data is how to establish point-to-point

correspondence. Previous work mainly relies on the underlying assumption

that exactly one optimal correspondence exists. Particularly when partial data

is completed, the established correspondence has a big influence and can result

in incorrect reconstructions.

In this thesis, we introduce a generalized probabilistic non-rigid regis-

tration framework. We build upon the Gaussian Process Morphable Model

(GPMM) framework, which clearly separates prior deformation information

from the general registration algorithm. We view non-rigid surface registra-

tion as a probabilistic inference problem. This leads us to a distribution of

registrations from a specific target. More importantly, the distribution does

not rely on any hard correspondence assumption. Instead of settling on one

specific correspondence assumption, our method takes all the different corre-

spondence pairs into account.

The thesis is divided into 3 main parts: first we introduce GiNGR, which

is a generalized iterative non-rigid surface registration framework that unifies

previous algorithms such as Iterative Closest Point (ICP) and Coherent Point

Drift (CPD) under the same non-rigid registration framework. We then show
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how we can use GiNGR to make existing registration algorithms probabilis-

tic in comparison to their deterministic nature. We empirically show how a

simple ICP method benefits from the probabilistic framework by becoming

more robust and able to quantify the registration uncertainty. Finally, we show

several applications of the probabilistic registration framework by analyzing

partial data and how PDMs can be constructed from partial data with different

properties using multiple imputations.
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1
Introduction

The goal of computer vision is to automate basic tasks that the human

visual system can do. For photographs of everyday scenes and objects, it is

trivial for humans to classify most objects in an image. We can point out where

the objects in an image are located and even partition the photo into multiple

segments to clearly separate the objects and the background. However, for

medical images, a similar task often requires extensive training of experts.

This training can be very time-consuming and is prone to a large variability

in the outcome, depending on the task at hand. By utilizing computer vision

systems within medical image analysis, we can make systems that are robust

and scalable.

A Statistical Shape Model (SSM) provides an intuitive way for both sur-

geons and patients to assess shape data. An SSM is a generative model that de-

scribes the shape variability within a shape family. A target image or a surface

can be analyzed with an SSM through analysis-by-synthesis, i.e. by utilizing

the SSM to generate an image or a surface that represents the target as close as

possible. An SSM can help to automatically quantify how likely a given shape

is. It can also be used to automatically extract measures, such as target volume

or distances between anatomical landmarks. An SSM is often used to recon-

struct the complete target shape from partial observations [5, 102, 104], which



CHAPTER 1. INTRODUCTION 2

is useful for forensic investigation, reconstructive surgeries or patient-specific

implant design [74, 91]. Another popular application of SSMs is image seg-

mentation, for which an overview is given in [33]. In this work, we focus

on Point Distribution Models (PDMs) which are a type of SSMs. PDMs pro-

vide inherent correspondence which we consider to be an important property

for a lot of automatic analyses beyond segmentation. Other models without

a point-correspondence assumption are e.g. SSMs based on level sets [92] or

non-parametric shape priors [45]. The classical PDM is formulated as a distri-

bution over shapes. It is therefore possible to derive a posterior model if only

part of a target is given [1] or if information such as weight, sex, or the age of

a patient is known [7].

In this thesis, we focus on point-to-point correspondence which is the un-

derlying principle in PDMs. Point-to-point correspondence, point correspon-

dence, or simply correspondence are often used interchangeably. In this thesis

we will mainly be using point-correspondence. To construct a PDM we need

a dataset of point-sets in point-correspondence. Likewise, when using a PDM

to analyze a target we also need to establish point-correspondence between the

PDM and the target. Establishing point-correspondence between two shapes

means we find point identifiers on the two shapes that have the same anatomi-

cal meaning. For instance, when analyzing faces this could the tip of the nose

on the two faces or when analyzing hands the tip of the thumb. In [16] when

PDMs were introduced, the corresponding points were found by manually la-

beling a sparse set of points, which meant that every point had an anatomical

meaning. In more recent times, correspondence is found densely over sur-

faces and varies from a few thousand to millions of points. The initial usage of

sparsely manually annotated anatomical landmarks has, in other words, shifted

to densely located landmarks which also involve points in between anatomi-

cal points, known as mathematical landmarks. In order to densely establish

point-correspondence between a reference (sometimes referred to as template

or source) and a target point-set we rely on automated processes known as

point-set registration. The process of registering two point-sets is also known

as pairwise registration [103].
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So far we have been discussing shapes as surfaces and as point-sets. In

the literature, registration methods are usually published separately for special

surface objects or for point-sets. With Gaussian Process Morphable Models

(GPMMs) introduced in [52] we can unify these two branches of research. A

PDM is a distribution over shapes, whereas a GPMM is a distribution over de-

formations from a reference surface. The reference can either be a continuous

surface or it can be a point-set discretization of a surface. For the remainder of

the thesis we will mainly be focusing on surfaces with point-sets being a spe-

cial instance under the GPMM formulation. On a technical note, we mainly

use triangulated meshes to represent surfaces. The move away from a sparse

set of landmarks with a clear anatomical meaning has the consequence that

identifying the same landmark identifier among two or more surfaces can be

difficult, especially in large smooth areas. The problem becomes even more

prominent when registering partial data as shown in Fig. 1.1a. As the mathe-

matical landmarks are spanned between anatomical landmarks, it is impossi-

ble to know which part of the complete femur shaft corresponds to the partial

femur shaft. In such a setting, with traditional non-rigid registration methods,

we can only obtain a single best correspondence which is highly dependent on

the initial starting point of the reference. We will refer to hard correspondence

whenever a method is used to find an exact one-to-one mapping between sur-

faces. Notice how this problem can be problematic when analyzing partial

data as well as when wanting to construct a PDM from partial data. An exam-

ple of using hard correspondence is shown in Fig. 1.1b where a partial femur

is completed with a PDM using differently obtained correspondences. In the

case of the femur, the correspondence has a large influence on the predicted

length of the femur. The length may vary up to several centimeters, depend-

ing on the obtained correspondence (even while having the same registration

accuracy).

The hard correspondence problem does not mean that we should avoid us-

ing PDMs. Despite their inherent flaws, PDMs have shown to be valuable in

many applications. But it does mean that we should be aware of their weak-

nesses and underlying assumptions and find methods that avoid using the hard
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Figure 1.1: Hard correspondence problem. In (a) we show how it can be espe-
cially difficult to obtain correspondence to a partial object in areas where the
surface is smooth and anatomical meaningful landmarks are therefore difficult
to identify. The green arrows show landmarks that can uniquely be identified,
the yellow arrows show landmarks that cannot be uniquely identified as they
are located on a smooth surface and the red arrow shows a landmark that is
not visible on the partial surface. The unknown outline shows a possible com-
pletion of the partial observation. In (b) we show different completions of the
partial femur surface by using differently estimated correspondences. We see
how the same partial surface might be reconstructed to having very different
lengths, depending on the obtained correspondence. We also show the cor-
respondence uncertainty which we can obtain using probabilistic registration
(blue: small uncertainty, red: large uncertainty).

correspondence property.

1.1 Contribution and Overview

In this thesis, we revisit point-correspondence, which is one of the funda-

mental principles behind PDMs. Our main contribution is the formulation of a

generalized probabilistic registration framework that makes use of a soft cor-

respondence property. Instead of finding a single best registration, we instead

compute a full posterior distribution of possible registrations from a single tar-
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get. In Fig. 1.2 an overview of the thesis is given. The thesis is structured in a

bottom-up fashion. In Chapter 2, we introduce Gaussian Process (GP), Gaus-

sian Process Regression (GPR) and GPMMs which are fundamental building

blocks in our registration framework. In Chapter 3 we introduce General-

ized Iterative Non-Rigid Point Cloud and Surface Registration Using Gaus-

sian Process Regression (GiNGR), which is a generalization of existing non-

rigid registration algorithms such as Iterative Closest Point (ICP) and Coher-

ent Point Drift (CPD). The reformulation of many existing algorithms into the

modular GiNGR framework has more advantages than just making the hyper-

parameters interpretable and comparable. This being, multi-resolution fitting

to speed up registration of large point-sets, controllable efficiency through the

GPMMs kernel approximation, a clear strategy to include expert annotations

and the possibility to combine analytical and statistical learned deformations.

In Chapter 4 we introduce the generalized probabilistic registration frame-

work Probabilistic GiNGR (P-GiNGR), which is a fully probabilistic method

for non-rigid registration, that makes use of the Metropolis-Hastings (MH)

algorithm. Furthermore, we show how GiNGR is just a special instance of P-

GiNGR which means that by reformulating existing algorithms into GiNGR

we can have them utilize the probabilistic registration properties of P-GiNGR

Finally, in Chapter 5 we show different applications of P-GiNGR. We

show how P-GiNGR can be used to analyze partial data and how PDMs can

be constructed from a variety of partial data observations.

1.1.1 A Word of Caution

In contrast to the traditional mentioning of PDMs, we do not scale all

example data to the same size, as we usually want to quantify the size of a

shape. This is the notion being used within the GPMM community where

a shape is defined as being invariant under some transformation. In GPMM

this transformation is purely rigid, whereas traditional shape analysis often is

invariant under a similarity transformation.

In this work, we focus on non-rigid registration between a single reference

and a target. The reference and the target can be either point-sets or surfaces.
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Probabilistic-GiNGR

Existing non-rigid 

registration algorithms
 

• ICP

• CPD

• BCPD

• etc.

GiNGR

Background
  

• GPMMs

• Gaussian Process Regression

Applications
 

• Partial data analysis

• Creating PDMs from partial data

Chapter 3

Chapter 4

Chapter 2

Chapter 5

Figure 1.2: Overview of the thesis structure and how the different chapters are
connected.

Unless otherwise specified, registration refers to finding a non-rigid transfor-

mation to deform the reference onto the target. Throughout the thesis, we will

be referring to their non-rigid versions when mentioning ICP and CPD unless

otherwise is specified.

1.2 Related work

Mentioning that no single best registration exists for modern 3D point-sets

with millions of vertices has previously been done in [40]. The authors suggest

to overcome the hard correspondence problem by computing correspondence

probabilities between points on the reference and the target. This procedure

is similar to the method used in CPD to obtain point-correspondence which

we will look more into in Section 3.2.1. With the correspondence probabili-

ties in [40], they compute the mean shape based on a set of correspondence

probabilities instead of a set of shapes in correspondence. In order to perform

Principal Component Analysis (PCA) and obtain the variation in the dataset,

they use virtual correspondence points based on the correspondence probabil-

ities. In Section 5.4 we show how this can be done directly from a distribution

of different correspondence pairs.
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Additional related work is found in the individual chapters. In Section 3.3

we discuss existing non-rigid registration methods. In Section 4.5 we dis-

cuss related work in probabilistic registration methods as well as methods for

quantifying uncertainty in registration methods. In the introduction for the in-

dividual applications in Chapter 5 we have added related work to the specific

applications.



2
Background

In this chapter we formalize the non-rigid registration task and introduce

both GPR and the concept of GPMMs.

2.1 Non-rigid Registration

The goal of registration is to find an optimal spatial transformation of a

reference surface ΓR ⊆ Ω, onto a target surface ΓT ⊂ R
d with Ω ⊂ R

d being

the domain and d the domain dimension, which is typically d = 2 or d = 3.

Formally we can write

argmin
T

d [T (ΓR),ΓT ] . (2.1)

The output of registration is then the optimal transformation T according to

the distance function d(·, ·). The deformations that are generally involved with

surface and point-set registration are, scaling s ∈ R, rotation R ∈ SO(d),

translation t ∈ R
d and non-rigid deformations u : Ω → R

d. We can then

formulate the registration problem as

T̃ = argmin
s,R,t,u

{d [sR(x+ u(x)) + t,ΓT ] + λR(u)|x ∈ ΓR}, (2.2)
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with T̃ being the optimal transformation which is regularized byR to restrict

the non-rigid deformations to be smooth and λ a hyper-parameter to control

the amount of regularization.

For the majority of this thesis, we will focus on settings where the scaling

is constantly one and the possible global rigid difference between the surfaces

have been minimized by solving a least square problem based on a few land-

marks on each of the surfaces as in [94]. The transformations that we are

interested in are therefore u, which are smooth local deformations, that should

let the shape stay within its shape class. The regularized local deformations

are then found with

ũ = argmin
u
{d [x+ u(x),ΓT ] + λR(u)|x ∈ ΓR}. (2.3)

To model the local deformations u, we make use of GPMMs.

2.2 Gaussian Process Morphable Models

We model the surface deformations with a GP model, which serves as a

continuous function u ∼ GP(µ, k) on the domain. The GP is completely

defined by its mean function µ : Ω→ R
d and a kernel function k : Ω× Ω→

R
d×d. In the book by Rasmussen and Williams [76] an extensive overview of

the area of GPs is given. Lüthi et al. [52] introduced GPMMs where GPs are

used to describe deformations from a reference surface. Their formalization

is a generalization of the classical PDM [16], which in contrast to PDMs also

allows for analytically defined deformations by specifying the mean and the

kernel function of the GP. The GP is defined such that µ : ΓR → R
d and

k : ΓR×ΓR → R
d×d. The deformations that the reference shape can undergo

are distributed according to the defined GP, u ∼ GP(µ, k) with a surface

defined such that

Γ = {x+ u(x)|x ∈ ΓR} (2.4)

Using a GP as the model leads to a possible inifinite-dimensional non-

parametric model. With the introduction of GPMMs, they propose to use the

truncated Karhunen-Loève expansion to obtain a low-rank approximation of
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the GP. With this, the GP is approximated as

u[α](x) = µ(x) +

r
∑

i=1

αi

√

λiφi(x), αi ∼ N (0, 1) (2.5)

where r is the number of basis functions used in the approximation and λi
and φi are the i-th eigenvalue and eigenfunction of the covariance operator

associated with the kernel function k. Consequently, any deformation u is

uniquely determined by a coefficient vector α ∈ R
r with which we can specify

the resulting surface as

Γ[α] = {x+ µ(x) +
r
∑

i=1

αi

√

λiφi(x)|x ∈ ΓR}. (2.6)

We are able to reduce the computation costs of fitting by choosing a small

r. As the α vector contains independent normally distributed values, we also

have an associated probability for each deformation

p(Γ[α]) = p(α) = (2π)
− r

2 exp(−

∥

∥α
2
∥

∥

2
). (2.7)

Different choices of kernel functions lead to different well-known deformation

models, such as radial basis functions, b-splines or thin-plate splines. In order

to model smooth deformations, we most commonly choose a zero-mean GP

with a Gaussian kernel

g(x, x′) = exp

(

−||x− x′||2

2β2

)

, (2.8)

with β being the width of the Gaussian kernel and the full kernel function in d

dimension is

k(x, x′) = Id · g(x, x
′)s (2.9)

where Id is the d dimensional identity matrix and s is a kernel scaling param-

eter.

2.2.1 Point Distribution Models

Besides being able to analytically define the kernel function, the deforma-

tion prior can also be learned from a set of N example shapes in correspon-
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dence. We can calculate the deformations u from a reference shape at each

corresponding point x and model them by a GP with mean:

µPDM (x) =
1

N

n
∑

i=1

ui(x) (2.10)

and the kernel function:

kPDM (x, x′) =
1

N − 1

n
∑

i=1

(ui(x)− µPDM (x))(ui(x
′)− µPDM (x′))T .

(2.11)

This makes the deformations modeled by the GP similar to the shape vari-

ance which is modeled in traditional PDMs [16] as also pointed out in [52].

Throughout the thesis, we will be referring to a GPMM with a kernel learned

from examples using PCA as a PDM and a model using analytically defined

kernels as a GPMM.

2.2.2 Standard Registration with GPMM

With the GPMM notation, we can rewrite Eq. (2.3) to minimize the dis-

tance between the two surfaces with the deformation field u which is approx-

imated by the coefficient vector α

α̃ = argmin
α1,...,αr

d [Γ[α],ΓT ] + λR(α), (2.12)

withR =
∑r

i=1 α
2
i regularizing the deformation fields. In [52] the authors de-

fine the distance function to be the mean squared distance from the deformed

reference to the target surface. The optimization of Eq. (2.12) is then per-

formed using a black-box optimization algorithm. In Chapter 3 we introduce

GiNGR which instead of a black-box optimizer makes use of GPR to itera-

tively deform the reference surface. With GPR we can iteratively recompute

and fix the correspondence assumption for each iteration. In comparison to

a black-box optimizer, this works especially well for partial surfaces. As we

will discuss in Section 3.3, GPR is very flexible in how the correspondence

can be obtained and has an intuitive interpretation of the regularization term.
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2.2.3 Analytical Posterior Models (GPR)

GPMMs make it simple and efficient to constrain a model to match known

correspondences, such as user annotations or the estimated correspondence

from taking the closest point. Indeed, the corresponding analytical posterior

model is again a GP, whose parameters are known in closed form. This is also

what in [76] is referred to as GPR.

Let u ∼ GP (µ, k) be a GPMM and ǫ ∼ N (0, σ2Id), be the certainty

of each known landmark. Landmarks lR on the reference surface can then

be matched with their corresponding landmarks lT on the target. The set L

consists of the nlm reference landmarks and its expected deformation to match

the target

L = {(l1R, l
1
T − l

1
R), . . . , (l

nlm

R , lnlm

T − lnlm

R )} = {(l1R, û
1), . . . , (lnlm

R , ûnlm)},

(2.13)

with û being subject to Gaussian noise ǫ. Using GPR, we obtain the posterior

model up ∼ GP (µp, kp), which models the possible surface deformations

that are consistent with the given landmarks. Its mean and kernel function are

given by:

µp(x) = µ(x) +KX(x)T (KXX + ǫ)−1Û

kp(x, x
′) = k(x, x′) +KX(x)T (KXX + ǫ)−1KX(x′).

(2.14)

Here we defined KX(x) =
(

k(liR, x)
)

i=1,...,nlm

, a vector of the target de-

formation as ûi =
(

liT − l
i
R

)

i=1,...,nlm

and the kernel matrix KXX =
(

k(liR, l
j
R)
)

i,j=1,...,nlm

. Notice that the posterior model up is again a GP.

Also notice how GPR is ideal for multi-resolution fitting as we do not need to

observe the deformation field for the entire surface, but the areas in between

landmark observations are instead regressed. Classical non-rigid surface reg-

istration algorithms usually define a deformation for a discretized set of points

on the surface, which is similar to performing the registration between point-

sets.
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2.2.4 Discrete Surface Representations

Here we show how our representation of continuous surfaces can be used

on point-sets by discretizing the surfaces to a set of points. This notation

will be useful in Chapter 3, where we convert existing non-rigid registration

methods into GiNGR which makes use of GPMMs and GPR. Many existing

methods are described using matrix notation, so for convenience, we will rein-

troduce the GPR notation from above for point-sets. We sample the reference

surface ΓR at n points to construct the matrix XR ∈ R
n×d. Likewise, the tar-

get surface ΓT is sampled at m points XT ∈ R
m×d. What we are looking for

is a deformation vector for each point in XR, stored in the matrix U ∈ R
n×d,

such that Ũ = argminU d [ΓR + U,ΓT ] + λR(U). We denote regularized

deformations as Ũ while we write Û for the observed deformations.

For the observed deformations Û , and the predicted deformations Ũ the

joint distribution according to the prior GP can then be written as
[

Û

Ũ

]

∼ N

([

MX

MX∗

]

,

[

K(X,X) + σ2In K(X,X∗))

K(X∗, X) K(X∗, X∗)

])

(2.15)

Given n observed and n∗ predicted deformations, K(X,X) is the n × n co-

variance matrix of the observed deformations, K(X,X∗) is the n×n∗ matrix

of covariances evaluated at all pairs of observed and predicted deformations

and similarly forK(X∗, X∗) andK(X,X∗). For every observed deformation,

we assume independent identically distributed Gaussian noise. The mean of

the posterior distribution can be computed in closed form as:

M̃ = MX∗ +K(X∗, X)(K(X,X) + σ2In)
−1Û . (2.16)

If the observed and predicted deformations are the same, which is the case

when we estimate a correspondence for every point in registration algorithms,

then the mean of GPR simplifies to

M̃ = MX +K(K + σ2In)
−1Û , (2.17)

with K being a shorthand notation for the covariance matrix spanned by the

observed deformations K(X,X).



CHAPTER 2. BACKGROUND 14

2.3 Model Parameters

A reference surface which is deformed with a GPMM can be completely

described by the shape coefficient vector α. We use αi to refer to the i’th

entry in the α vector. Likewise, we use α
i to refer to the value of α in the

i’th iteration when performing iterative registration, where α is updated in

each iteration. In addition to the shape coefficients α of GPMMs, we can

also apply a global transformation. Here we just note the transformations

for 3 dimensions where the translation is t = (tx, ty, tz)
T ∈ R

3 and the

rotation R(φ, ψ, ρ) ∈ SO(3). The rotation matrix R is parameterized by the

Euler angles φ, ψ, ρ. We summarize all the parameters in the vector θ =

(α1, . . . , αn, φ, ψ, ρ, tx, ty, tz). Consequently, we write Γ[θ] to refer to the

resulting surface.



3
GiNGR: A Generalized Registration

Framework

In this chapter we introduce GiNGR which is a generalization of exist-

ing non-rigid registration algorithms. GiNGR unifies methods from point-set

(sometimes referred to as point cloud) and surface registration under the same

framework. We will first start out with a motivation behind GiNGR. We will

then introduce GiNGR and show how existing methods can be converted into

the GiNGR framework. Finally, we will discuss related work before conclud-

ing the unifying framework.

3.1 Motivation

Registration of point-sets is used in many areas within computer vision,

such as medical image analysis, Simultaneous Localization and Mapping

(SLAM) to analyze an agent’s environment within robotics or Geoscience.

Closely related is also surface or volume registration where the points have

additional connectivity information such as lines, triangles, or tetrahedrons.

Within the last 20+ years, a vast majority of different registration algorithms

have been published, all of which try to find an optimal transformation be-
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tween a reference and a target. Many of the most popular point registration

methods are summarized in [62, 103]. However, they do not include surface

registration methods such as [2, 3, 11, 23, 28, 49, 61, 105]. With so many

different methods to use, it can be difficult to know the difference between all

of them and therefore also which one to choose for a specific problem. We

do not consider many of the recent state-of-the-art methods based on neural

network as they often need a large dataset to learn the deformation space from

and can therefore be categorized as group-wise registration. An example is

[42] which is the current best-ranked method for the FAUST dataset challenge

[8]. Our framework requires no training data to learn its deformations from.

However, within the same framework, we can utilize statistical deformation

priors learned from data and even combine them with analytically defined de-

formation prior.

For any non-rigid registration approach, we can summarize their three

main assumptions that have to be made:

1. Regularization - How similar should the deformations of neighboring

points be?

2. Correspondence - How to estimate corresponding point pairs between

the reference and the target?

3. Robustness - What is the noise assumption of the observed correspon-

dence estimate? And how is uncertain correspondence handled?

Registration methods differ because of the different solutions they provide

to the three points listed above. By clearly defining these assumptions, we

are able to unify the methods into the same framework. The resulting hyper-

parameters required by the framework are then easy to understand and com-

pare. Among other explanations, we think the number of registration methods

is that high because they are often tuned to specific datasets and that their code

is often not available. The hyper-parameters are also often difficult to inter-

pret and thereby difficult to choose optimally. With GiNGR we have imple-

mented a modular setup to easily switch between different registration strate-
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gies. Hence we can make algorithms better comparable and easier adaptable

to new tasks.

The basics of the GiNGR framework have informally been around for

years. A minimal non-rigid ICP version was introduced together with GPMMs

in a Massive Open Online Course (MOOC) 1. In this chapter we generalize the

steps introduced during the MOOC and show how this generalization makes

it possible to reformulate many existing algorithms into the modular GiNGR

framework.

The reformulation of many existing algorithms into the modular GiNGR

framework has more advantages than just making the hyper-parameters bet-

ter interpretable and comparable, such as multi-resolution fitting to speed up

registration of large point-sets, controllable efficiency through the GPMMs

kernel approximation, a clear strategy to include expert annotations and the

possibility to combine analytical and statistical learned deformations.

3.2 Method

GiNGR is a generalization of existing non-rigid registration methods. We

have summarized the framework in Alg. 1. We follow the iterative optimiza-

tion method from [3], where the correspondence is recomputed and fixed for

every iteration. A property of iteratively re-estimating the correspondence

points is that the optimization can be non-monotonically decreasing, which

can help avoid getting stuck in a local optima, as highlighted in [3]. With the

estimated correspondence, we perform GPR and update the model parameters

with the mean of the posterior distribution. Finally, the correspondence un-

certainty might be updated before iterating again. In the following sections,

we will show how CPD and ICP are examples of GiNGR and how they define

the GPMM kernels, correspondence estimation and noise term. As a minimal

setup, one can use the Gaussian kernel from Eq. (2.8) with β set to the wanted

point correlation distance. The uncertainty σ2 can be set manually based on

1 futurelearn.com/courses/statistical-shape-modelling

https://www.futurelearn.com/courses/statistical-shape-modelling
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Algorithm 1: GiNGR registration algorithm

Input: ΓT target surface,
Γ̂R = ΓR,
GPMM based on the reference surface Γ̂R

Output: Γ̂R

Data: set GPMM parameter α = 0,
initialize correspondence uncertainty σ2

while While (not converged) do

Estimate correspondence deformations L (Eq. (2.13)) or Û if
estimating for all points in ΓR;

Perform GPR, i.e. compute up (Eq. (2.14));
Update α with the mean of the posterior distribution (Eq. (2.14)
or Eq. (2.16));

Update GPMM reference Γ̂R (Optional);
Update correspondence uncertainty σ2;

end

the noise assumption for the estimated correspondences. A good initial value

is given in [66]:

σ2 =
1

dnm

n
∑

i=1

m
∑

j=1

∥

∥

∥
X̂i

R −X
j
T

∥

∥

∥

2

(3.1)

with X̂i
R − X

j
T being the distance between the i′th point on the reference

and the j′th point on the target. The correspondence deformation Û can be

computed using closest point estimate. The reference Γ̂R is then updated with

the mean of the GPR from Eq. (2.16). This step should be skipped if using

a statistical kernel (Section 3.2.2.1). Instead, the model parameters of the

GPMM should be updated by projecting the posterior mean into the model.

The uncertainty value is either manually or automatically decreased in each

iteration as the reference gets closer to the target. An automatic update strategy

is seen in [67] where they use gradual annealing to decrease the uncertainty

in each step, or [35, 66] where the updated uncertainty is computed based

on the variance difference between the reference and target points and the

deformation update.

Seen from a practical aspect when registering two surfaces using the
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GiNGR implementation, one starts out with defining the deformation prior

for the specific application using a mixture of kernels. The GPMM is then

constructed for a compact description of the model. As shown in [52], we can

sample and visualize the deformation prior separately from the fitting. In the

fitting step, the correspondence estimation function needs to be chosen (e.g.

probabilistic or heuristic closest points) and a strategy to update the uncer-

tainty in each iteration.

3.2.1 Unifying ICP and CPD with GiNGR

In this section, we show how existing methods are special instances under

the GiNGR framework. The notation from the cited papers has been modified

slightly to allow for an easier connection between the different algorithms. We

also provide links to the corresponding equations in the original papers for an

easy comparison.

3.2.1.1 Coherent Point Drift

CPD was originally introduced as a non-rigid point-set registration method

in [67]. Later on, the authors generalized the method to additionally allow for

rigid and affine transformations as well as automatically compute some of the

hyper-parameters in [66]. What we are searching for in CPD is the deforma-

tion vector Ũ from the reference point-set XR such that a new point-set loca-

tion is found in each iteration X̂R = XR+ Ũ . Initially X̂R = XR. The defor-

mation is iteratively computed based on the new point-set location X̂ until the

distance between the reference and the target surface meets a predefined con-

vergence threshold. The CPD algorithm uses an Expectation–maximization

(EM) approach.

In the E step a probabilistic correspondence matrix P is computed, where

each entry is defined as (eq. 6 from [66]):

pij =
k(X̂i

R, X
j
T )

∑m
ii=1 k(X̂

ii
R , X

j
T ) + C(w)

(3.2)

with k being a Gaussian kernel (Eq. (2.8)), X̂i
R X

j
T being the i′th and j′th
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point on X̂R and XT respectively and C(w) being an outlier distribution con-

trolled by 0 ≤ w ≤ 1 which can be seen as the percentage of outlier points

that the user can set manually. Let us consider w = 0, then each column of

the P matrix sums to 1. In other words, each entry in the matrix states the

probability of the j’th point in the target point-set corresponding to the i’th

point in the reference point-set. In the following, we will also be using the P1

vector, which is the row-wise sum of the P matrix. These values give some

direct insight into the confidence of the correspondence. A higher value will

give more confidence to the deformation of this point from the reference.

In the M step, the probability matrix is kept fixed and the MAP de-

formation is computed. In CPD the deformation vectors are defined with

Ũ = KGW . KG is a Gaussian kernel matrix with entries kij according to

Eq. (2.8). W is a weighted sum of the deformations between a point on the

reference and all the points on the target

wi =
1

σ2 ∗ λ

m
∑

j=1

P (xi|yj)(yj − x̂i).

In the paper, they show how the computation of W can be restructured such

that we end up with (eq. 22 from [66])

KGW = KG(KG + λσ2Q)−1(QPXT − X̂R) (3.3)

with Q = diag(P1)−1 being the diagonal matrix formed using the vector

P1. By comparing this formulation to Eq. (2.17) we have that K = KG,

σ2In = λσ2Q and

Û = QPXT − X̂R (3.4)

To put it another way, one iteration of CPD is equivalent to one iteration of

GPR where the width of the kernel of the GP is specified from the β hyper-

parameter. Each deformation observation Û i is a sum of all possible corre-

spondence pairs where each pair is scaled with their correspondence proba-

bility. We can also see that the noisy observation is scaled with the inverse

of the P1 entries. So a high P1 value leads to a lower noise assumption on

that specific observation. The λ hyper-parameter is used as a simple manual

scaling of the noise observation.
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3.2.1.2 Bayesian Coherent Point Drift

Hirose [35] generalized the original CPD using Variational Bayesian In-

ference (VBI) formulation, calling it Bayesian Coherent Point Drift (BCPD).

The BCPD algorithm follows the original CPD paper in large parts. There-

fore, we only mention the main differences to the original paper. The refor-

mulation to BCPD includes an optimization scheme for non-Gaussian kernels,

to which the original CPD algorithm is limited to. The reformulation also in-

cludes integration of combined optimization of the global similarity transform

and the local non-rigid deformations. The work was then extended and called

BCPD++, in order to speed up the BCPD algorithm using GPR to allow for

down-sampling of the point-sets [34]. As we have shown in Section 3.2.1.1,

CPD can be reformulated as GPR which is also the case for BCPD. Under the

GiNGR framework, the two-stage BCPD++ algorithm can instead be unified

under a single GP instead of having one GP for the BCPD step and one for the

interpolation steps.

In the BCPD formulation, the point-sets are vectorized, so xR ∈ R
3n and

u ∈ R
3n. The updated point-set in each iteration is:

x̂R = T (xR + ũ) = s(Im ⊗R)(xR + ũ) + (1m ⊗ t) (3.5)

with T being the similarity transformation with a scaling s ∈ R, rotation

R ∈ R
d×d and translation t ∈ R

d and ⊗ being the Kronecker product. The

correspondence matrix P is largely the same as in the standard CPD, but with a

few improvements. The matrix is updated with an indicator function to note if

a point is an outlier as well as having updated the outlier distribution for which

the integral approaches zero when n becomes large in the standard CPD. We

refer the reader to eq. 8 of [35].

The local deformation observations in BCPD is in comparison to Eq. (3.4):

Û = (T −1(QPXT )−XR) (3.6)

which can be explained as the local deformations modeling the residual of the

global similarity transformation T . The regularized deformations are then

Ũ = KGW = KG(KG + λ
s2

σ2
Q)−1(T −1(QPXT )−XR) (3.7)
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Finally, the updated global similarity transformation is a least-squares esti-

mation of transformation parameters between two point-sets similar to [94].

The point-sets used to compute the transformation are the scaled target-points

QPXT and the reference points updated with the current local deformation

xR + ũ.

3.2.1.3 Iterative Closest Point - Translations

ICP methods contain a whole range of different methods, where the task

is to find a transformation that aligns a reference to a target based on a pre-

liminary set of correspondences found from closest point searching. In [6, 10]

they estimate a global rigid transformation, whereas other papers focus on the

non-rigid deformation [2, 3, 11, 23, 49]. In this thesis, we use the abbrevia-

tion ICP even when referring to non-rigid deformations, which sometimes is

shortened as nICP. In this section we will be looking at [3] that introduces two

different variants of ICP for 3-dimensional surface registration. In [3] they

use a least-square optimization technique instead of a black-box energy min-

imization solver as in [2]. This property is more robust as the closest points

are reevaluated in each step and [3] allow for outliers, which is also possible

within the GiNGR framework. The ICP-T algorithm is a simple reformulation

of [2], which iteratively finds the local translation deformation for each ver-

tex in the point-set. They introduce a stiffness term to regularize how much

neighboring vertices are allowed to differ in their deformations. The paper also

introduces ICP-A which includes the idea from [23] to model local differences

as affine transformations. According to the authors, local affine transforma-

tions is a more robust way to register partial data. In [23] they also show how

local translations can end up shrinking the reference surface which in their

work is avoided by using local affine transformations.

Let us start out with looking at the ICP-T algorithm which minimizes a

standard quadratic cost function:

argmin
x

= ‖Ax− B‖2F , (3.8)
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with the terms

argmin
Ũ

=

∥

∥

∥

∥

∥

[

λsB

WIn

]

Ũ −

[

0

W (Xc −XR)

]∥

∥

∥

∥

∥

2

F

(3.9)

where λs is a stiffness parameter governing the regularization strength of the

deformations, W ∈ R
n×n is a diagonal weight matrix identifying robust cor-

respondence points, B ∈ R
r×n is the incidence matrix and r the number of

edges in the reference surface. The closest point locations for each of the

points in XR are contained in Xc ∈ R
n×d. For simplicity in the derivation,

we set W = In and λs = 1. Solving equation (3.8) using least-squares leads

to

x = (ATA)−1ATB (3.10)

Using the values from Eq. (3.9)

Ũ = (BTB + λ2sI)
−1(Xc −XR) (3.11)

Here we recognize that L = BTB is the Laplacian matrix. We now make use

of the Woodbury matrix identity for invertible matrices [99]:

(A+ UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1 (3.12)

with A−1 ∼ L† = K, all U ,C, and V chosen as identity matrices as well as

Û = Xc −XR, we can show that ICP-T chooses the deformations as

Ũ = Z +K(K + λ2sI)
−1Û . (3.13)

The Laplacian matrix is not invertible as one of its eigenvalues is 0. Instead,

the generalized inverse (pseudo-inverse) is used which is why a correction

term Z is added. The general inverse of the Laplacian matrix and its applica-

tions are summarized in [31]. The correction term of the generalized inverse

Laplacian is discussed in more detail in Section 3.2.1.5.

More details about the intermediate steps of the derivation can be found in

Appendix A.1. In [3], a weighting matrix is also part of the optimization. This

matrix identifies non-robust points and keeps them out of the cost-function.
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In GPR, non-robust points are directly removed from the observation data Û .

In Appendix A.1.1 we include the derivation showing that this is equivalent

to what is done in the ICP methods. In [3], they also show how expert an-

notated landmarks can be integrated in the optimization and controlled via an

extra hyper-parameter. Including expert annotations in GPR is however triv-

ial as they can be added as noisy observations to the GPR formulation. In

Appendix A.1.1 we also show that λs from Eq. (3.9) is equivalent to σ from

Eq. (2.17) which is the independent Gaussian noise assumption for each ob-

servation.

3.2.1.4 Iterative Closest Point - Affine transformations

We now turn to the ICP-A algorithm, where the final transformation matrix

M∈ R
4n×3 no longer consists of simple deformations, but instead of an affine

transformation matrix for each point in the reference.

argmin
M

=

∥

∥

∥

∥

∥

[

λsB ⊗G

WD

]

M−

[

0

WXc

]
∥

∥

∥

∥

∥

2

F

(3.14)

with G being the diag([1, 1, 1, γ]T ) and γ depending on the units of the data

and D ∈ R
4n×3 being the sparse mapping of XR. Again, we begin with the

ICP-A energy optimization terms expanded to the least square solution. For

simplicity, we have set W = I and λs = 1 as in the ICP-T example.

M = (BTB ⊗G+DTD)−1(Xc) (3.15)

The full derivation can be found in Appendix A.2, which follows the same

procedure as ICP-T. For ICP-A we end up with the kernel being K = DKDT

with K being the generalized inverse Laplacian matrix and DDT being the

dot product kernel [76], which is what makes the ICP-A algorithm invariant to

rotations around the origin. To keep the observations as simple deformations,

they are corrected to adjust for the modeling of affine transformations Û =

Xc − (XR +K−1XR).

Many papers exist which expand on [3] for their specific domains. One

paper is [38] where they learn a SSM from a training set over the possible
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affine transformations. As described in Section 3.2.2.1, the GiNGR framework

also allows for the usage of statistically learned kernels.

3.2.1.5 Generalized Inverse Laplacian Correction Term

We inspect the correction term by isolating Z from

(L+ I)−1Û = Z + L†(L† + I)−1Û (3.16)

whenW = I then Z is exactly the mean observation Ū which is missing from

X̂R. The same setup for ICP-A is likewise the average affine transformation

that is missing. In practical terms, this means that using the generalized in-

verse Laplacian in the GiNGR framework cannot correct for a rigid offset like

the ICP-A algorithm. Fortunately, we can compute the rigid transformation

from [94] as also done in the BCPD algorithm. In Fig. 3.1 we compare the

ICP algorithms and the GiNGR implementation of the ICP-A algorithm on a

partial data registration problem, where a small rigid offset is found (femur

data from [61]). Note that this experimental setup is similar to the synthetic

shape registration experiment from [3].

As in [3], we see that the ICP-T algorithm cannot adjust for the rigid offset,

whereas the ICP-A method correctly adjusts for this when we start from a very

large initial noise term λs. The GiNGR method uses the kernel from ICP-A

and it uses [94] to estimate the correction term Z, thereby approximating the

initial alignment offset.

3.2.2 ICP and CPD Comparison in GiNGR

In this section, we compare the ICP and CPD algorithms as derived in Sec-

tion 3.2.1. There are two main points that distinguish the methods, namely the

kernels that are used and the way that the observed deformations Û are found.

In Fig. 3.2 the different kernels are visualized, with the color indicating the

absolute kernel correlation to a landmark on the right foot of the Armadillo2.

2 graphics.stanford.edu/data/3Dscanrep/

http://graphics.stanford.edu/data/3Dscanrep/
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(a) (b) (c) (d)

Figure 3.1: Femur registration comparison: (a) red is the partial target, yellow
is the reference and the white are completions with (b) ICP-T, (c) ICP-A, (d)
GiNGR with the generalized inverse Laplacian and dot product kernel.

The generalized inverse Laplacian matrix as used in the ICP methods has a

direct relation to the commute distance matrix [95]. In comparison to the

Gaussian kernel that operates with the Euclidean distance, the commute dis-

tance is a measure between points on a graph. This makes it favorable to use

if the shape that is being analyzed has spatially close but uncorrelated items as

for instance the feet of the Armadillo. An interesting observation is how the

dot product kernel adds correlation to points located 180° away. This explains

how the femur in Fig. 3.1 is able to recover its correct position. In Fig. 3.3 we

also included the simple symmetrical kernel from [27] with a Gaussian kernel

being symmetrized. The symmetrical kernel is useful for registering symmet-

rical objects such as the face or the skull. Also notice how the Laplacian based

kernel is invariant to a pose deformation of the reference surface. In Fig. 3.3

we additionally show how the variance parameter β2 selected for the Gaussian

kernels affects the point correlation.

The observed deformations in the ICP methods use the closest point

heuristic and filter away points based on their normal directions, on whether
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(a) (b) (c)

Figure 3.2: Visualization of the absolute point correlation to a landmark on the
right foot. The top and bottom row shows the kernel correlation on the same
reference surface in two different positions. (a) Gaussian with large variance,
(b) Generalized inverse Laplacian, (c) Generalized inverse Laplacian and dot
product. Notice how the Laplacian based methods are invariant to the pose
difference as it works on the surface distance in comparison to the Gaussian
kernel which uses the Euclidean distance between points. Blue: small corre-
lation, red: large correlation.

they are located on the boundary of a surface and on whether the closest point

deformation vectors intersect the surface itself. On the contrary, CPD based

methods span a complete correspondence probability matrix between all point

pairs inXR andXT . Probabilistic correspondence works well when the global

structure of the target is given and can even recover large rigid transformation

offsets. Another advantage of probabilistic correspondence methods are noisy

point-sets where a closest point approach can have difficulties filtering away

noisy points. However, the methods fail in a partial data registration scenario

as shown in Fig. 3.4. We also observe that the automatic computation of σ2

in BCPD works well to get the rigid offset and the global structure of the tar-

get correctly, but it can have difficulties to explain local intrinsic details. It

is therefore advisable to use a closest point method after a global fit has been
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(a) (b) (c) (d)

Figure 3.3: Visualization of the absolute point correlation to a landmark on
the right foot: (a) Gaussian with a small variance, (b) Gaussian with a medium
variance, (c) Gaussian with a large variance, (d) Symmetrical Gaussian with a
large variance. Blue: small correlation, red: large correlation.

found with a probabilistic correspondence method. If the generalized inverse

Laplacian matrix is used, it is important to know that the complete matrix

needs to be spanned before a low-rank approximation can be computed for

the GPMM. This means that the kernel is less useful for surfaces with many

points. The Gaussian kernel can be described as a kernel function and effi-

ciently approximated based on the Nyström method as done in [35, 52].

3.2.2.1 Point Distribution Models

The simple GiNGR framework can be used with analytically defined ker-

nels to bring point-sets in correspondence to build a statistical kernel. Given

a statistical kernel (Eq. (2.10), Eq. (2.11)), we can use it the exact same way

as an analytically defined kernel to analyze novel data. Statistical and analytic

kernels can even be combined to create an augmented kernel as also high-

lighted in [52]. Note that, if the GiNGR framework is used to fit a standard

PDM, then the GPMM reference update step should be skipped. The specific

case of using ICP to fit a PDM has previously been shown in [11] but this

without making the connection to GPMMs and other registration algorithms

such as CPD.
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(a) (b) (c) (d)

Figure 3.4: Femur registration comparison: (a) red is the partial target, yellow
is the reference and the white are completions with (b) GiNGR with Gaussian
kernels (c) GiNGR as BCPD fails to register partial data, (d) GiNGR as BCPD
registration of complete target.

3.3 Related Work

In Section 3.2.1 we showed how the CPD and BCPD can be reformulated

in the GiNGR framework. Furthermore, we showed how the reformulation

of ICP from [3] to a least-square optimization problem allows us to reformu-

late it into the GiNGR framework using the Woodbury matrix identity. In

this section, we highlight how other non-rigid registration methods estimate

the correspondence field Û and what kind of smoothness regularization they

apply.

3.3.1 Correspondence Estimation

In [13] they introduce a binary linear assignment method to establish cor-

respondence between two point-sets. A sparse correspondence matrix is used

to identify corresponding points and potential outliers. The method is then

extended to soft-assigning values which is similar to the P matrix in the CPD

method, but without explicitly formulating the point-set registration as a max-
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imum likelihood estimation problem. In [12] they introduce the Trimmed ICP

(TrICP) which sorts the closest points according to their Euclidean distance to

the target. The closest points with a distance below a set threshold are then

filtered away to only compute the transformation on a subset of the reference

points. In [63] they introduce probabilistic point matching (PPM) which is

what is used in CPD. Later on, they extend their work to part-based PPM [64]

which allows for local different transformations.

In [40] they generalize the rigid EM-ICP [28] to affine transformations.

The EM-ICP assumes Gaussian noise on the target points and uses an EM-

like algorithm to maximize the correspondence probability of the reference

points. They also show that it tends toward the standard ICP when a small

variance is chosen. This is again a probabilistic correspondence method for

point-sets that is robust to noise and works similar to CPD.

Several feature-based alternatives exist to probabilistic correspondence es-

timation and the closest point heuristic. The spin image is used as a feature

descriptor for 3D surfaces [44] as used in [53] or fast point feature histogram

(FPFH) [82] as used in [54, 55] which captures the underlying surface model

properties (local geometry, surface normals, curvatures etc.). A three-stage

iterative point registration process is used in [23] where the last step involves

local affine transformations for each vertex. A closest point method based on

8 dimensional (vertex position, vertex normals, and curvature) is used to es-

timate the correspondence between the two surfaces. A multi-level fitting is

used in [9] where they first use feature points as the correspondence estimate

and in a later stage they change to locally weighted ICP in order to register

local details. In [49] they increase the reliability of simple closest point corre-

spondence estimation, by introducing a 2-way closest point search. This sim-

ple filtering step can be an effective heuristic to remove bad correspondence

estimates.

All of the mentioned methods have the potential to be used in the GiNGR

framework as they provide a simple point deformation estimate. This list of

correspondence estimation methods is by no means complete, but it provides a

good overview of the different methods that exist depending on the application
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at hand. Additionally, an extensive review of different ICP methods can be

found in [73].

3.3.2 Smoothness Regularization

In Section 3.2.2 we showed how the regularization used in CPD and the

ICP methods lead to different kernel priors and we visually compared different

kernels in Fig. 3.2 and Fig. 3.3. In [86] they show how the covariance operator

can generally be seen as an intermediate representation to convert between

kernel functions, RKHS, regularization operators, and GPs. The majority of

registration papers describe their optimization and regularization terms in a

single algorithm, instead of separating them as in the GiNGR framework by

using GPMMs. Besides the kernels already mentioned, in [35] they show how

different positive-definite kernels can be used in the CPD algorithm, such as

the inverse multiquadric and the rational quadratic kernel. Another popular

regularization prior is thin-plate splines (TPS), as used in [13] to define the

non-rigid deformations on a range of synthetic data and brain-structure point-

sets. TPS is also used in [9] for range scanning registration. In [105] they use

a spherical analog of TPS for inter-subject brain surface registration and in

[27] they use a multi-scale B-spline kernel together with a symmetrical kernel

to register 3D scans of faces. Unfortunately, to our knowledge, there is no

single best kernel that works in all domains. The kernel function needs to be

designed on a case-by-case basis. Kernels can also be added or multiplied

together to complement each other. A complete list of valid kernel mixtures is

given in [22].

3.3.3 Gaussian Process Regression

GPR has previously been used in different registration pipelines. In [36]

they are working in a SLAM environment and use GPR to extract key-points

from underwater sonar images. A simple squared exponential kernel is used

to model low-frequency elevation changes on the seafloor. In a fine-tuning

step, an ICP like approach is used. In [96], GPR is used in an iterative fashion
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to include more and more points into the training set to estimate the road-

shape based on multiple 3D lidar scans. Starting from a few inlier points,

they iteratively add or reject more points to the inlier dataset based on the

GP posterior. This way of iteratively adding robust points to the observa-

tions can easily be integrated as a strategy in GiNGR. A similar strategy was

also used in [75] where they iteratively classified the surface into healthy and

pathological regions and perform a non-rigid optimization step. In [61] they

are using GPMMs and closest point correspondence to obtain a distribution

of possible surface registrations using the Metropolis-Hastings method. They

empirically show how the stochastic method improves a simple ICP algorithm

by being able to escape local minima. The method can be seen as an extension

to GiNGR for applications that are primarily interested in the distribution of

different registrations instead of a single best registration.

3.4 Conclusion

In this chapter, we have shown how popular non-rigid registration meth-

ods for point-set and surface registration can be generalized with the GiNGR

framework. The unifying framework separates the optimization from the mod-

eling and allows for direct comparison of registration methods. We have

shown how different ICP algorithms are fundamentally different from pop-

ular CPD based algorithms by systematically comparing their regularization,

correspondence, and robustness attributes. We have identified how their cor-

respondences are approximated, how the regularization can be reformulated

in terms of the underlying kernels, and how they are using different strategies

to robustly allow for finer details to be fitted in each iteration. By explaining

the ICP algorithms with GiNGR, we have identified that the ICP-A is better

in registering partial surfaces with a small rigid offset due to the dot product

kernel in comparison to the ICP-T algorithm. In the CPD algorithm, we have

identified that the underlying independent noise assumption is individually

computed for each point based on the correspondence probability matrix. Be-

yond comparing existing registration algorithms, GiNGR can be used to easily
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change between different methods during registration or to create methods that

combine parts from existing algorithms. The framework gives additional ben-

efits such as a clear concept for including expert-annotation, multi-resolution

fitting for faster and more robust registration procedures, and the ability to

use statistical deformation priors. In the following chapter, we will look at

non-rigid registration where the individual iterations are probabilistic in com-

parison to the deterministic steps performed in GiNGR. The conversion to

probabilistic registration has many advantages such as, soft correspondence,

uncertainty quantification, and the possibility to escape local minima. We will

show how GiNGR is a special instance under the probabilistic framework.

This means that if we can convert existing algorithms into GiNGR, then we

can also convert them from deterministic registration to probabilistic registra-

tion.



4
P-GiNGR: Probabilistic Registration

In this chapter, we introduce P-GiNGR, which is a generalization of

GiNGR to a probabilistic registration framework. We will show how the

standard deterministic GiNGR is just a special instance under the P-GiNGR

framework. The main parts of this chapter have previously been published in

[61]. We will first start out with the motivation for a probabilistic registra-

tion framework before we formally introduce P-GiNGR. We also show how

P-GiNGR and GiNGR compare in registering femur bones, where the biggest

challenge is establishing correspondence along the long smooth surface of the

femur shaft. Finally, we refer to related work on probabilistic registration and

uncertainty quantification in registration methods.

4.1 Motivation

In this chapter, we propose an efficient, fully probabilistic method for sur-

face registration. With P-GiNGR we formulate non-rigid surface registration

as an approximation of the posterior distribution over all possible instances of

point-to-point correspondences, given a target surface. With this approach, we

can also quantify the registration uncertainty, which is the remaining variance

in the posterior distribution. The ability to quantify the uncertainty of a surface
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registration is important in many areas of shape analysis. It is especially use-

ful for the reconstruction of partial data, or for the analysis of data where the

exact correspondence is unclear, such as smooth surfaces. Within the medical

field, the uncertainty of partial data reconstruction is needed to make informed

surgical decisions [77]. Uncertainty estimates can also be used to build better

generalizing Point Distribution Models (PDMs) by assigning an uncertainty

measure to each landmark [40, 56].

P-GiNGR makes use of the MH algorithm to sample surface registrations

from the posterior distribution. In comparison to many deterministic meth-

ods, our method can escape local optima and aims to capture the full posterior

distribution of registrations. The efficiency of the method is gained by intro-

ducing a specialized way of constructing proposals based on estimated corre-

spondence pairs. Our proposal can make informed updates while maintaining

the theoretical convergence properties of the MH algorithm.

As in the previous chapters, we focus on non-rigid registration. However,

MH allows for easy integration of proposal distributions of parameters other

than the shape. The proposal distribution can therefore easily be extended to

include translation, rotation, scaling as shown in [65], or texture, illumination,

and camera position as in [83].

4.2 Method

Instead of formulating the registration as an optimization problem, we for-

mulate it as Bayesian inference. We obtain the posterior distribution of pa-

rameters α given the target surface ΓT as:

P (α|ΓT ) =
P (ΓT |α)P (α)

∫

P (ΓT |α)P (α)dα
. (4.1)

The prior probability, computed with Eq. (2.7), pushes the solution towards a

more likely shape given the GPMM space by penalizing unlikely shape defor-

mations. The likelihood term can easily be customized with different distance

measures and probability functions depending on the application goal at hand.

As in the majority of deterministic registration methods, we are usually inter-
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ested in modeling the average Euclidean distance between two surfaces (dl2 ),

for which we can use the independent point evaluator likelihood:

P (ΓT |α) =
n
∏

i=1

N (dl2(Γ
i
T ,Γ[α]i); 0, σ2

l2), (4.2)

as also used in [65]. The Euclidean distance between the i-th point Γ[α]i ∈ R
d

and its closest point on the surface Γi
T is rated using a zero-mean normal

distribution with the expected standard deviation for a good registration. The

variance σ2
l2 is the observation noise of the points of our target surface. We

can register for a better Hausdorff distance [4] by changing the likelihood to:

P (ΓT |α) = Exp(dH(ΓT ,Γ[α]);λH) (4.3)

with dH being the Hausdorff distance between the two surfaces andExp being

the exponential distribution controlled by the rate parameter λH , with proba-

bility density function (pdf) p(d) = λHe
−λHd.

4.2.1 Approximating the Posterior Distribution

The posterior distribution defined in Eq. (4.1) can unfortunately not be

obtained analytically. Yet, we can compute the unnormalized density value

for any shape described by α. This allows us to use the Metropolis-Hastings

algorithm [79] to generate samples from the posterior distribution in the form

of a Markov chain. The MH algorithm is summarized in Alg. 2. A general

way to explore the parameter space is to use a random-walk proposal, i.e. a

Gaussian update distribution in the parameter space

Q(α′|α) ∼ N (α, σl). (4.4)

We usually combine differently scaled distributions, each with a specified σl,

to allow for both local and global exploration of the posterior distribution. For

each proposal, one distribution is chosen at random.
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Algorithm 2: Metropolis-Hastings sampling

1: α
0 ← arbitrary initialization

2: for i = 0 to S do

3: α
′ ← sample from Q(α′|αi)

4: t←
q(αi|α′)p(ΓT |α

′)p(α′)

q(α′|αi)p(ΓT |αi)p(αi)
. {acceptance threshold}

5: r ← sample from U(0, 1)
6: if t > r then

7: α
i+1 ← α

′

8: else

9: α
i+1 ← α

i

4.2.2 Correspondence-proposal

A random walk in the parameter space of the prior GPMM is time-

consuming as it usually is high-dimensional. Instead, we propose to accelerate

convergence by using an informed proposal. For the proposal to reach a unique

stationary distribution, we have to be able to compute the transition probability

which requires the proposal to be stochastic. We propose the Correspondence-

Proposal (CP) which takes estimated correspondence pairs between the model

and the target into account to guide the proposed change. Internally, we use an

analytical posterior model up based on estimated correspondences to propose

randomized informed samples. From a current state α, we propose an update

α
′ by executing the following steps (visualized in Fig. 4.1):

1. Construct the set of observations L based on corresponding landmark

pairs as in Eq. (2.13) and define the noise ǫi ∼ N (0,Σi) using Eq. (4.6).

2. Compute the analytic posterior up (Eq. (2.14)) with L and {Σi}.

3. Get αo by first drawing a random surface3 from the posterior model up
and then projecting it into the prior model u.

3 Sampling all αi independently from N (0, 1) and constructing the shape with Eq. (2.6).
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û1

<latexit sha1_base64="pkG1G2fG0Sj37TlxMOOMsA4r8Ag=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeCF48V7Ie0sWy2m3bpbhJ2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GNzO//cS1EXF0j5OE+4oOIxEKRtFKD70RxSydPtb65Ypbdecgq8TLSQVyNPrlr94gZqniETJJjel6boJ+RjUKJvm01EsNTygb0yHvWhpRxY2fzQ+ekjOrDEgYa1sRkrn6eyKjypiJCmynojgyy95M/M/rphhe+5mIkhR5xBaLwlQSjMnsezIQmjOUE0so08LeStiIasrQZlSyIXjLL6+SVq3qXVbdu4tKneRxFOEETuEcPLiCOtxCA5rAQMEzvMKbo50X5935WLQWnHzmGP7A+fwBzbSQTQ==</latexit>

û2

<latexit sha1_base64="EeKDPmBYEsZyhIuh+/i1x0JJZgg=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPBi8cK9kPaWDbbTbt0Nwm7E6GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKSLeQIGStxPNqQokbwWjm6nfeuLaiDi6x3HCfUUHkQgFo2ilh+6QYpZOHs975YpbdWcgy8TLSQVy1Hvlr24/ZqniETJJjel4boJ+RjUKJvmk1E0NTygb0QHvWBpRxY2fzQ6ekBOr9EkYa1sRkpn6eyKjypixCmynojg0i95U/M/rpBhe+5mIkhR5xOaLwlQSjMn0e9IXmjOUY0so08LeStiQasrQZlSyIXiLLy+T5lnVu6y6dxeVGsnjKMIRHMMpeHAFNbiFOjSAgYJneIU3RzsvzrvzMW8tOPnMIfyB8/kDzziQTg==</latexit>

û3

<latexit sha1_base64="hu2+R+TtX/0Ez7eE6w6vvA9+zBM=">AAACBHicbVDLSsNAFJ3UV62vqMtuglVwVRIRdVlwocsK9gFJKDeTSTt0JgkzE6GELtz4K25cKOLWj3Dn3zhps9DWA8MczrmXe+8JUkalsu1vo7Kyura+Ud2sbW3v7O6Z+wddmWQCkw5OWCL6AUjCaEw6iipG+qkgwANGesH4uvB7D0RImsT3apISn8MwphHFoLQ0MOveDXAOrhckLJQTrr/cA5aOYOoPzIbdtGewlolTkgYq0R6YX16Y4IyTWGEGUrqOnSo/B6EoZmRa8zJJUsBjGBJX0xg4kX4+O2JqnWgltKJE6Bcra6b+7siBy2JBXclBjeSiV4j/eW6mois/p3GaKRLj+aAoY5ZKrCIRK6SCYMUmmgAWVO9q4REIwErnVtMhOIsnL5PuWdO5aNp3543WcRlHFdXRETpFDrpELXSL2qiDMHpEz+gVvRlPxovxbnzMSytG2XOI/sD4/AFww5iE</latexit>

Γ[α]

<latexit sha1_base64="Mtm9Uh4OP8IhlhA6w7icHUDoP0w=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE1GPBi8cqpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6mfrNJ1Sax/LBjBMMIjqQvM8ZNVbyRff+0euWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNjp2QU6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvg4zLJDUo2XxRPxXExGT6OelxhcyIsSWUKW5vJWxIFWXG5lOyIXiLLy+TxnnVu6y6dxeV2kkeRxGO4BjOwIMrqMEt1MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucPSUGOPw==</latexit>

l1R

<latexit sha1_base64="DCLgY/VF6S1TwdebDMMiAOe5BM8=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGKaQttLJvtpF262YTdjVBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjhs6CRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTP3mEyrNE/lgRikGMe1LHnFGjZV80b1/rHZLZbfizkCWiZeTMuSod0tfnV7CshilYYJq3fbc1ARjqgxnAifFTqYxpWxI+9i2VNIYdTCeHTshZ1bpkShRtqQhM/X3xJjGWo/i0HbG1Az0ojcV//PamYmugzGXaWZQsvmiKBPEJGT6OelxhcyIkSWUKW5vJWxAFWXG5lO0IXiLLy+TRrXiXVbcu4ty7TSPowDHcALn4MEV1OAW6uADAw7P8ApvjnRenHfnY9664uQzR/AHzucPSsWOQA==</latexit>

l2R

<latexit sha1_base64="fHUUjjL7eJzOm7YGwX04YiyjiM8=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KomKeix48VjFtIW2ls120y7dbMLuRCihv8GLB0W8+oO8+W/ctjlo64OBx3szzMwLEikMuu63s7S8srq2Xtgobm5t7+yW9vbrJk414z6LZaybATVcCsV9FCh5M9GcRoHkjWB4M/EbT1wbEasHHCW8E9G+EqFgFK3ky+7943m3VHYr7hRkkXg5KUOOWrf01e7FLI24QiapMS3PTbCTUY2CST4utlPDE8qGtM9blioacdPJpseOyYlVeiSMtS2FZKr+nshoZMwoCmxnRHFg5r2J+J/XSjG87mRCJSlyxWaLwlQSjMnkc9ITmjOUI0so08LeStiAasrQ5lO0IXjzLy+S+lnFu6y4dxfl6nEeRwEO4QhOwYMrqMIt1MAHBgKe4RXeHOW8OO/Ox6x1yclnDuAPnM8fTEmOQQ==</latexit>

l3R

<latexit sha1_base64="eRkqA75g2pKyRm4QvkDy82v94+8=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KomKeix48VihaQttLJvttl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXJlIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJxqxn0Wy1i3Qmq4FIr7KFDyVqI5jULJm+Hobuo3n7g2IlZ1HCc8iOhAib5gFK3ky2798bJbKrsVdwayTLyclCFHrVv66vRilkZcIZPUmLbnJhhkVKNgkk+KndTwhLIRHfC2pYpG3ATZ7NgJObNKj/RjbUshmam/JzIaGTOOQtsZURyaRW8q/ue1U+zfBplQSYpcsfmifioJxmT6OekJzRnKsSWUaWFvJWxINWVo8ynaELzFl5dJ46LiXVfch6ty9TSPowDHcALn4MENVOEeauADAwHP8ApvjnJenHfnY9664uQzR/AHzucPT1WOQw==</latexit>

l3T

<latexit sha1_base64="D0pCnCv6tif20Mh7r0i7wrLLU2s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKqMeCF48VmlpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhHtzP/4YlrIxLVxHHKg5gOlIgEo2glX/aaj7VeueJW3TnIKvFyUoEcjV75q9tPWBZzhUxSYzqem2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzI+dknOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8PoJpgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/JhuAtv7xKWrWqd1V17y8r9bM8jiKcwClcgAfXUIc7aIAPDAQ8wyu8Ocp5cd6dj0VrwclnjuEPnM8fTdGOQg==</latexit>

l2T

<latexit sha1_base64="d32TYTwnZyiW5sEZU/s5UwGDkVA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE1GPBi8cKTVtoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbT6g0T2TDjFMMYjqQPOKMGiv5otd49Hrlilt15yCrxMtJBXLUe+Wvbj9hWYzSMEG17nhuaoIJVYYzgdNSN9OYUjaiA+xYKmmMOpjMj52Sc6v0SZQoW9KQufp7YkJjrcdxaDtjaoZ62ZuJ/3mdzES3wYTLNDMo2WJRlAliEjL7nPS5QmbE2BLKFLe3EjakijJj8ynZELzll1dJ87LqXVfdh6tK7SyPowgncAoX4MEN1OAe6uADAw7P8ApvjnRenHfnY9FacPKZY/gD5/MHTE2OQQ==</latexit>

l1T

<latexit sha1_base64="ZF82PlqkXOplBb9BoNNjCJ+Y9FM=">AAAB73icbVBNS8NAEJ34WetX1aOXxSp4KomIeix40GOFfkEbymS7aZfuJnF3I5TQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuYFieDauO63s7K6tr6xWdgqbu/s7u2XDg6bOk4VZQ0ai1i1A9RM8Ig1DDeCtRPFUAaCtYLR7dRvPTGleRzVzThhvsRBxENO0Vip3b1DKbFX75XKbsWdgSwTLydlyFHrlb66/ZimkkWGCtS647mJ8TNUhlPBJsVuqlmCdIQD1rE0Qsm0n83unZAzq/RJGCtbkSEz9fdEhlLrsQxsp0Qz1IveVPzP66QmvPEzHiWpYRGdLwpTQUxMps+TPleMGjG2BKni9lZCh6iQGhtR0YbgLb68TJoXFe+q4j5clquneRwFOIYTOAcPrqEK91CDBlAQ8Ayv8OY8Oi/Ou/Mxb11x8pkj+APn8wesoY+j</latexit>

ΓT

<latexit sha1_base64="hu2+R+TtX/0Ez7eE6w6vvA9+zBM=">AAACBHicbVDLSsNAFJ3UV62vqMtuglVwVRIRdVlwocsK9gFJKDeTSTt0JgkzE6GELtz4K25cKOLWj3Dn3zhps9DWA8MczrmXe+8JUkalsu1vo7Kyura+Ud2sbW3v7O6Z+wddmWQCkw5OWCL6AUjCaEw6iipG+qkgwANGesH4uvB7D0RImsT3apISn8MwphHFoLQ0MOveDXAOrhckLJQTrr/cA5aOYOoPzIbdtGewlolTkgYq0R6YX16Y4IyTWGEGUrqOnSo/B6EoZmRa8zJJUsBjGBJX0xg4kX4+O2JqnWgltKJE6Bcra6b+7siBy2JBXclBjeSiV4j/eW6mois/p3GaKRLj+aAoY5ZKrCIRK6SCYMUmmgAWVO9q4REIwErnVtMhOIsnL5PuWdO5aNp3543WcRlHFdXRETpFDrpELXSL2qiDMHpEz+gVvRlPxovxbnzMSytG2XOI/sD4/AFww5iE</latexit>

Γ[α]

<latexit sha1_base64="Mtm9Uh4OP8IhlhA6w7icHUDoP0w=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE1GPBi8cqpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6mfrNJ1Sax/LBjBMMIjqQvM8ZNVbyRff+0euWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNjp2QU6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvg4zLJDUo2XxRPxXExGT6OelxhcyIsSWUKW5vJWxIFWXG5lOyIXiLLy+TxnnVu6y6dxeV2kkeRxGO4BjOwIMrqMEt1MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucPSUGOPw==</latexit>

l1R

<latexit sha1_base64="DCLgY/VF6S1TwdebDMMiAOe5BM8=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGKaQttLJvtpF262YTdjVBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjhs6CRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTP3mEyrNE/lgRikGMe1LHnFGjZV80b1/rHZLZbfizkCWiZeTMuSod0tfnV7CshilYYJq3fbc1ARjqgxnAifFTqYxpWxI+9i2VNIYdTCeHTshZ1bpkShRtqQhM/X3xJjGWo/i0HbG1Az0ojcV//PamYmugzGXaWZQsvmiKBPEJGT6OelxhcyIkSWUKW5vJWxAFWXG5lO0IXiLLy+TRrXiXVbcu4ty7TSPowDHcALn4MEV1OAW6uADAw7P8ApvjnRenHfnY9664uQzR/AHzucPSsWOQA==</latexit>

l2R

<latexit sha1_base64="fHUUjjL7eJzOm7YGwX04YiyjiM8=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KomKeix48VjFtIW2ls120y7dbMLuRCihv8GLB0W8+oO8+W/ctjlo64OBx3szzMwLEikMuu63s7S8srq2Xtgobm5t7+yW9vbrJk414z6LZaybATVcCsV9FCh5M9GcRoHkjWB4M/EbT1wbEasHHCW8E9G+EqFgFK3ky+7943m3VHYr7hRkkXg5KUOOWrf01e7FLI24QiapMS3PTbCTUY2CST4utlPDE8qGtM9blioacdPJpseOyYlVeiSMtS2FZKr+nshoZMwoCmxnRHFg5r2J+J/XSjG87mRCJSlyxWaLwlQSjMnkc9ITmjOUI0so08LeStiAasrQ5lO0IXjzLy+S+lnFu6y4dxfl6nEeRwEO4QhOwYMrqMIt1MAHBgKe4RXeHOW8OO/Ox6x1yclnDuAPnM8fTEmOQQ==</latexit>

l3R

<latexit sha1_base64="eRkqA75g2pKyRm4QvkDy82v94+8=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KomKeix48VihaQttLJvttl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXJlIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJxqxn0Wy1i3Qmq4FIr7KFDyVqI5jULJm+Hobuo3n7g2IlZ1HCc8iOhAib5gFK3ky2798bJbKrsVdwayTLyclCFHrVv66vRilkZcIZPUmLbnJhhkVKNgkk+KndTwhLIRHfC2pYpG3ATZ7NgJObNKj/RjbUshmam/JzIaGTOOQtsZURyaRW8q/ue1U+zfBplQSYpcsfmifioJxmT6OekJzRnKsSWUaWFvJWxINWVo8ynaELzFl5dJ46LiXVfch6ty9TSPowDHcALn4MENVOEeauADAwHP8ApvjnJenHfnY9664uQzR/AHzucPT1WOQw==</latexit>

l3T

<latexit sha1_base64="D0pCnCv6tif20Mh7r0i7wrLLU2s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKqMeCF48VmlpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhHtzP/4YlrIxLVxHHKg5gOlIgEo2glX/aaj7VeueJW3TnIKvFyUoEcjV75q9tPWBZzhUxSYzqem2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzI+dknOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8PoJpgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/JhuAtv7xKWrWqd1V17y8r9bM8jiKcwClcgAfXUIc7aIAPDAQ8wyu8Ocp5cd6dj0VrwclnjuEPnM8fTdGOQg==</latexit>

l2T

<latexit sha1_base64="d32TYTwnZyiW5sEZU/s5UwGDkVA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE1GPBi8cKTVtoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbT6g0T2TDjFMMYjqQPOKMGiv5otd49Hrlilt15yCrxMtJBXLUe+Wvbj9hWYzSMEG17nhuaoIJVYYzgdNSN9OYUjaiA+xYKmmMOpjMj52Sc6v0SZQoW9KQufp7YkJjrcdxaDtjaoZ62ZuJ/3mdzES3wYTLNDMo2WJRlAliEjL7nPS5QmbE2BLKFLe3EjakijJj8ynZELzll1dJ87LqXVfdh6tK7SyPowgncAoX4MEN1OAe6uADAw7P8ApvjnRenHfnY9FacPKZY/gD5/MHTE2OQQ==</latexit>

l1T

<latexit sha1_base64="ZF82PlqkXOplBb9BoNNjCJ+Y9FM=">AAAB73icbVBNS8NAEJ34WetX1aOXxSp4KomIeix40GOFfkEbymS7aZfuJnF3I5TQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuYFieDauO63s7K6tr6xWdgqbu/s7u2XDg6bOk4VZQ0ai1i1A9RM8Ig1DDeCtRPFUAaCtYLR7dRvPTGleRzVzThhvsRBxENO0Vip3b1DKbFX75XKbsWdgSwTLydlyFHrlb66/ZimkkWGCtS647mJ8TNUhlPBJsVuqlmCdIQD1rE0Qsm0n83unZAzq/RJGCtbkSEz9fdEhlLrsQxsp0Qz1IveVPzP66QmvPEzHiWpYRGdLwpTQUxMps+TPleMGjG2BKni9lZCh6iQGhtR0YbgLb68TJoXFe+q4j5clquneRwFOIYTOAcPrqEK91CDBlAQ8Ayv8OY8Oi/Ou/Mxb11x8pkj+APn8wesoY+j</latexit>

ΓT

<latexit sha1_base64="hu2+R+TtX/0Ez7eE6w6vvA9+zBM=">AAACBHicbVDLSsNAFJ3UV62vqMtuglVwVRIRdVlwocsK9gFJKDeTSTt0JgkzE6GELtz4K25cKOLWj3Dn3zhps9DWA8MczrmXe+8JUkalsu1vo7Kyura+Ud2sbW3v7O6Z+wddmWQCkw5OWCL6AUjCaEw6iipG+qkgwANGesH4uvB7D0RImsT3apISn8MwphHFoLQ0MOveDXAOrhckLJQTrr/cA5aOYOoPzIbdtGewlolTkgYq0R6YX16Y4IyTWGEGUrqOnSo/B6EoZmRa8zJJUsBjGBJX0xg4kX4+O2JqnWgltKJE6Bcra6b+7siBy2JBXclBjeSiV4j/eW6mois/p3GaKRLj+aAoY5ZKrCIRK6SCYMUmmgAWVO9q4REIwErnVtMhOIsnL5PuWdO5aNp3543WcRlHFdXRETpFDrpELXSL2qiDMHpEz+gVvRlPxovxbnzMSytG2XOI/sD4/AFww5iE</latexit>

Γ[α]
<latexit sha1_base64="hqbOzgZeavwwEpfIRv2kBVn/FXQ=">AAAB/nicbVDLSsNAFJ34rPUVFVduBovgqiQi6rLgxp0V7AOaWG4mk3boJBNmJkIJBX/FjQtF3Pod7vwbJ20W2npgmMM59zJnTpByprTjfFtLyyura+uVjerm1vbOrr2331Yik4S2iOBCdgNQlLOEtjTTnHZTSSEOOO0Eo+vC7zxSqZhI7vU4pX4Mg4RFjIA2Ut8+9ALBQzWOzZV7wNMhTB5u+3bNqTtT4EXilqSGSjT79pcXCpLFNNGEg1I910m1n4PUjHA6qXqZoimQEQxoz9AEYqr8fBp/gk+MEuJISHMSjafq740cYlUkNJMx6KGa9wrxP6+X6ejKz1mSZpomZPZQlHGsBS66wCGTlGg+NgSIZCYrJkOQQLRprGpKcOe/vEjaZ3X3ou7cndcauKyjgo7QMTpFLrpEDXSDmqiFCMrRM3pFb9aT9WK9Wx+z0SWr3DlAf2B9/gDkrpX6</latexit>

α
O

<latexit sha1_base64="sdeG5rQXMrq96hwe+nKPx66CrjM=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1hEVyURUZcFNy4r2FpoQplMJu3QySTMTIQair/ixoUibv0Pd/6NkzYLbT0wzOGce5kzJ0g5U9pxvq3K0vLK6lp1vbaxubW9Y+/udVSSSULbJOGJ7AZYUc4EbWumOe2mkuI44PQ+GF0X/v0DlYol4k6PU+rHeCBYxAjWRurbB16Q8FCNY3PlHubpEE9O+nbdaThToEXilqQOJVp9+8sLE5LFVGjCsVI910m1n2OpGeF0UvMyRVNMRnhAe4YKHFPl59P0E3RslBBFiTRHaDRVf2/kOFZFQDMZYz1U814h/uf1Mh1d+TkTaaapILOHoowjnaCiChQySYnmY0MwkcxkRWSIJSbaFFYzJbjzX14knbOGe9Fwbs/rTVTWUYVDOIJTcOESmnADLWgDgUd4hld4s56sF+vd+piNVqxyZx/+wPr8AewTlWo=</latexit>
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Figure 4.1: Visualization of the CP with the current instance (blue) from the
model, and the target surface (red). The correspondence has been estimated
using closest-points in the given example. The grey ellipse in the center win-
dow shows the landmark noise for l2R. The right window shows how an update
for l2R is generated based on the posterior sample α

o and the step size d.

4. We generate

α
′ = α+ d(αo −α) (4.5)

with d ∈ [0.0 ... 1.0] being a step-length.

A way to model the noise ǫ in 3-dimensions and account for correlated un-

certainty is with a low variance along the normal direction and high variance

along the surface. The variance at each point in Γ[α] can be set to:

Σi = [vn,v1,v2]







σ2
n 0 0

0 σ2
v 0

0 0 σ2
v






[vn,v1,v2]

T , (4.6)

where vn is the surface normal at a landmark liR on the surface and v1 and

v2 are perpendicular vectors to the normal. The variances along the vectors

are set such that σ2
v ≫ σ2

n. This noise term ensures that the posterior model

from step 2 takes the uncertain correspondence along the surface into account,

which is not well defined in flat regions.

If a small step length is chosen in step 4, the current proposal is only

adjusted slightly in the direction of the target surface, resulting in a locally

restricted step. With a step size of 1.0, the proposed sample is an independent

sample from the posterior in Eq. (2.14). This parameter is mainly used to

adjust the proposal to have a good acceptance rate.
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To construct L as described in step 1, we can make use of simple clos-

est points as used in ICP or take all the possible combinations of correspon-

dence pairs into account to compute the probabilistic correspondence pairs as

in CPD.

4.2.2.1 Computing the Transition Probability

Unlike the random-walk proposal, the CP is not symmetric. Therefore, we

need to be able to compute the transition probability to ensure convergence of

the MH algorithm. For each new proposal α′ from the CP distribution, we

need to compute the transition probability as part of the acceptance threshold

(see Alg. 2 step 4). The transition probability q(α′|α) is equal to the prob-

ability of sampling the shape corresponding to α
o from the posterior model

up, computed in step 2.14 of the CP. For q(α|α′), the transition probability

is computed in the same way. We solve Eq. (4.5) for α′
o after swapping α

and α
′ and evaluate the corresponding shape likelihood under the posterior

distribution c′p, which is the posterior distribution computed based on α
′

4.3 Probabilistic GiNGR

P-GiNGR is a simple extension to the GiNGR framework in Alg. 1. In

Alg. 3 we show a rewriting of the MH algorithm introduced in Alg. 2 by us-

ing the informed CP. The additional steps needed for P-GiNGR is highlighted

with bold text. By comparing Alg. 1 and Alg. 3 we see that GiNGR is a spe-

cial version of its probabilistic version. In P-GiNGR a random sample is taken

from the posterior distribution, whereas GiNGR makes use of the Maximum

a posteriori probability (MAP) estimate (the posterior mean). Furthermore,

P-GiNGR has a validation/rejection step to check if the newly proposed α

should be updated or kept. In GiNGR the newly proposed parameter is in con-

trast always accepted. The chain of proposals obtained after a burn-in phase

of P-GiNGR contains samples from the unnormalized posterior distribution.

In the following experiments, we will first look at the convergence proper-

ties of P-GiNGR before we compare GiNGR with P-GiNGR where the same
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Algorithm 3: Probabilistic GiNGR registration algorithm

Input: ΓT target surface,
Γ̂R = ΓR,
GPMM based on the reference surface Γ̂R

Output: Γ̂R

Data: set GPMM parameter α = 0,
initialize correspondence uncertainty σ2

while While (not converted) do

Estimate correspondence deformations L (Eq. (2.13));
Perform GP-regression, i.e. compute up (Eq. (2.14));
Draw random sample α

o from up;
Accept of reject, i.e. keep α or update to α

o;

Update GPMM reference Γ̂R (Optional);
Update correspondence uncertainty σ2;

end

correspondence estimate is used.

4.4 Experiments

In the following, we perform registration experiments on surfaces of femur

bones. We use 50 healthy femur surfaces extracted from computed tomogra-

phy (CT) images4. Each surface is complete, i.e. no holes or artifacts. This

setting is optimal for the standard ICP and CPD algorithms. We compare the

methods using the same GPMM model using either GiNGR or P-GiNGR. As

the surfaces are complete, without artifact and with no rigid offset, this dataset

serves as a fair comparison between the probabilistic and deterministic meth-

ods.

4.4.1 Convergence Comparison

We compare the convergence properties of our CP and random-walk. For

the CP, we use d = 0.5 and set the noise along the normal to vn = 5.0 and

4 Available via the SICAS Medical Image Repository [46].
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Figure 4.2: Convergence plots for the femur GPMM registrations with 50
components. Our CP is shown to the left and the random-walk (including a
zoomed-out plot) to the right. The CP needs 300 iterations, while the random-
walk needs more than 200k samples for the burn-in phase without reaching
the same registration quality even after 1M iterations. Run-time in seconds is
shown on the lower x-axis and the number of MH iterations on the upper.

along the surface to v = 100.0. For the random-walk, we use a mixture of

the proposals defined in Eq. (4.4), with σl being set to six different levels,

from 1.0mm to 0.01 µm, and all six proposal distributions equally likely to be

sampled from. For the CP we use a closest point correspondence estimate to

compute the correspondence set. In Fig. 4.2, the convergence time of the stan-

dard random-walk and the CP is shown. The experiment is performed with a

GPMM with a low-rank approximation of 50 components. We randomly ini-

tialize the model parameters and start 5 registrations in parallel. As expected,

our proposal leads to much faster convergence. In Fig. 4.3 we see a posterior

plot comparison of the two proposals. Note how the less likely samples are

often accepted which makes it different from deterministic methods such as

standard ICP and CPD.

4.4.2 Registration Accuracy - GiNGR vs P-GiNGR

In this experiment we make a direct comparison of GiNGR and P-GiNGR

using either a closest-point correspondence estimate or CPD correspondence.

As in the previous experiment, we use a femur-GPMM using a mixture of

Gaussian kernels and approximated with 50 basis functions. From the model,
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Figure 4.3: Posterior plot comparison of the CP and random-walk. Even with
a very small update step to the random-walk, it has difficulties to explore the
posterior in the high-dimensional setting. The CP, on the other hand, can more
efficiently explore the high-dimensional space. This can be seen in the fluctu-
ation of the posterior value where samples are often accepted even when being
less likely. For the random walk, the majority of samples are in contrast re-
jected due to the difficulty of exploring the distribution in higher dimensional
space.

we sample 100 random surfaces as starting points for the registration. We,

therefore, end up with 100 registrations for each target. In Fig. 4.4 we show

the summary of all 5000 registrations. We see that the probabilistic method

performs better both in terms of average Euclidean distance and Hausdorff

distance between the final registration and the target surfaces. The GiNGR

configurations converge at maximum 100 iterations, whereas we let P-GiNGR

explore the posterior distribution for 1.000 samples. In Section 5.1 we show

more examples of GiNGR compared to P-GiNGR in a partial data challenge.

In Fig. 4.5a we show the box plot results of 5 target surfaces. The plots

for the remaining target surfaces can be found in the Appendix B. We see that

GiNGR with CPD is very stable no matter its initialization as it always ends up

with the same distance to the target. The method however has problems with

not getting finer details of the target. Its probabilistic version with P-GiNGR

nearly always converges to a better solution but has some variation in the MAP

that is found. In general, we see the same trend for ICP that P-GiNGR almost

always converges to better solutions. In Fig. 4.5b and Fig. 4.5d we show the
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Figure 4.4: Distances (Euclidean (a) and Hausdorff (b)) between the final
registrations and their target surfaces. For each target surface, we randomly
initialize 100 registrations. The MAP sample from P-GiNGR is superior to
GiNGR using the same correspondence method. A refers to the plot being the
combined result of all 5000 registrations. The letters refer to the registration
method, I: GiNGR as ICP, PI: P-GiNGR as ICP, C: GiNGR as CPD, CP:
P-GiNGR as CPD.

same experiment as in Fig. 4.5a and Fig. 4.5c but we limit the iterations of

P-GiNGR to 100. We see that even with as few iterations as its deterministic

counterparts, P-GiNGR is better than GiNGR on the majority of the targets

and on average over all the targets. The few outliers for our method are there-

fore probably cases where the chain has not had time to explore the posterior

distribution. In Fig. 4.2 we see that the chain usually converges within 100-

300 samples, so this should be the absolute minimum number of samples to

draw. By drawing more samples, we can additionally explore the distribution

of different point-correspondences and therefore estimate the correspondence

uncertainty. In Fig. 4.6, we show the uncertainty of the established corre-

spondence of a registration from 1.000 samples (300 samples for the burn-in

phase).
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(a) Euclidean distance. 1000 samples with P-GiNGR.
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(b) Euclidean distance. 100 samples with P-GiNGR.
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(c) Hausdorff distance. 1000 samples with P-GiNGR.
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(d) Hausdorff distance. 100 samples with P-GiNGR.

Figure 4.5: The box plot shows the variation of the average Euclidean dis-
tances (a, b) and Hausdorff distance (c, d) from all 100 registrations of each
target. In (a and c) 1.000 samples are drawn, whereas (b and d) are limited to
100 samples. The MAP sample from our CP is superior to their deterministic
equivalents. The number refers to the target id (0 to 49), the letters refer to
the registration method, I: GiNGR as ICP, PI: P-GiNGR as ICP, C: GiNGR
as CPD, CP: P-GiNGR as CPD.
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Figure 4.6: Femur registration with uncertainty. The registration uncertainty
is visualized with the point-wise sum of variances. As expected, the higher
uncertainty of the established correspondence coincides with the shaft region
with the least characteristic shape. No variance is observed along the normals,
so the uncertainty is only in the correspondence along the surface.

Being able to estimate the correspondence uncertainty is an additional ben-

efit of using P-GiNGR over GiNGR. The uncertainty of individual points from

the posterior distribution from a single registration is depicted. Note the high

uncertainty values along the shaft, which indicate that the established corre-

spondence is less reliable in that region. No variance along the normals indi-

cates that the uncertainty is purely a correspondence shift within the surface.

In Section 5.1 we show additional uncertainty maps when registering partial

femurs.

4.4.2.1 Alternative Hausdorff Distance Likelihood

In this section we compare a P-GiNGR setup using two different likeli-

hood functions and see how this influences the MAP of femur registrations.

For the likelihood function, we use either the independent point evaluator (E),

Eq. (4.2), which models the average Euclidean distance to the target or the

Hausdorff likelihood (H), Eq. (4.3), which models the Hausdorff distance to

the target. In Fig. 4.7a, we compare the registration results based on their

Hausdorff distance. As expected, we see that the P-GiNGR with a Hausdorff

likelihood function also obtains the best MAP solution when comparing their
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Figure 4.7: Registration result comparison using either the Hausdorff or the
Euclidean distance likelihood. (a) Euclidean distance and (b) Hausdorff dis-
tance between the MAP samples and the target surfaces. The plots show that
the average Euclidean surface distance is only slightly worse when the Haus-
dorff (H) likelihood is used. The naming on the x-axis first mentions the tar-
get id, then the registration method which is P-GiNGR as ICP and finally,
(E) refers to a Euclidean metric being used in the likelihood function and (H)
refers to a Hausdorff metric being used.

Hausdorff distances. In Fig. 4.7b, we show that while optimizing for the Haus-

dorff distance, the average Euclidean distance is only slightly increased. This

demonstrates the capability to change the likelihood in our framework based

on the application at hand.

4.4.2.2 Drawbacks of Deterministic Methods

The main problem with ICP and CPD is that they cannot recover from local

optima. If the algorithm finds a corresponding point on the wrong part of the

target, we end up with a bad registration. In Fig. 4.8, we show a registration
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Figure 4.8: The 3 registration methods (GiNGR as ICP or CPD and P-GiNGR
as ICP) are shown in separate windows. The registration accuracy for the same
target is noted in the form of Euclidean- (E) and Hausdorff- (H) distances
(mm). The orange ellipses highlight problematic areas of the registration for
each method. For each method, we show the target with the registration over-
laid, the 3D-registration, and a 2D slice of the registration (colored) and the
target (black). Notice how P-GiNGR (in comparison to GiNGR) shows the
correspondence uncertainty (summed point variances (mm2) for each land-
mark).

result of the 3 registration methods. The ICP with GiNGR can get the overall

length of the bone correct but might end up with a registration, where the

structure is folding around itself. The CPD approach with GiNGR is more

robust than ICP as it preserves the topological structure of the point-sets but

often fails to get local details. We compare the two deterministic methods to

P-GiNGR as ICP. As shown in Fig. 4.8, this method has the additional benefit

of providing an uncertainty map of the final registration result.

4.4.2.3 Run-time Comparison

The number of components in the low-rank approximation can be seen as

regularization of the deformations. More complex local deformations can be

obtained using more components. The algorithm run-time scales near linearly

in the number of components, with the run-time being 1.5 times slower for P-

GiNGR. For models with rank 50, 100 and 200, the CP takes: 46 s, 110 s and

275 s. In comparison, the same correspondence method with GiNGR takes

30 s, 69 s and 155 s. While P-GiNGR method is slower than GiNGR, we still

get reasonable run-times while providing more accurate results and estimate
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the full posterior instead of a single estimate. The timings have been measured

with the closest point estimate as the correspondence estimation method.

4.5 Related Work

In Section 4.3 we showed how GiNGR is a special case of P-GiNGR. This

means that the related work suggestions from Section 3.3 mentioning on cor-

respondence estimation and deformation modeling are applicable to P-GiNGR

as well. In this section, we highlight related work on informed proposals, un-

certainty estimation in non-rigid surface registration and the usage of the MH

framework together with GPMMs.

Several alternatives already exist to the random-walk proposal, such as

MALA [29], Hamiltonian [69] or NUTS [37]. While the mentioned proposals

work well in lower-dimensional spaces and for smoother posteriors, we expe-

rienced that they get computationally demanding in high dimensional spaces

and have problems when the posterior is far from smooth. In [50], the ICP

method is improved using Simulated Annealing and Markov Chain Monte

Carlo (MCMC). Their method is a robust version of the ICP algorithm, which

can find the global optimal rigid registration of point-sets. However, they do

not measure the registration uncertainty, nor are they able to perform non-rigid

registrations.

P-GiNGR improves on previous works in the literature in different ways.

In [25, 78], the MH algorithm is used to estimate the uncertainty in non-rigid

registration. These papers are working on the image domain, and are not trans-

ferable to the surface registration setting. MH has also been used in [65] to fit

an Active Shape Model to images and in [83] to fit a Morphable Face Model

to an image, both of which only make use of the framework to avoid local

optima and to easily integrate different likelihood terms. The main problem

with the MH algorithm is the commonly used random-walk approach, which

suffers from very long convergence times when working in high-dimensional

parameter spaces. To overcome this problem, informed proposal distributions

can be designed to perform directed sample updates. In [47], a Bayesian Neu-
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ral Network is learned to produce informed samples for the MH framework

in the case of 3D face reconstruction from a 2D image. This, however, re-

quires training a neural network for each class of shapes to be registered. In

[41], local random-walk is combined with an image-dependent global pro-

posal distribution. This image-dependent distribution is, however, not directly

transferable to the problem of surface registration. Our method targets set-

tings with no, or limited, available training data and adds to existing methods

by providing an uncertainty measure, which is especially important within the

medical domain.

4.6 Conclusion

In this chapter, we presented P-GiNGR, which is a probabilistic registra-

tion framework. Our main contribution is the formulation of the CP for the

MH algorithm, which makes it possible to work in a high-dimensional model

space that would be difficult to explore with pure random-walk. Our informed

proposal integrates knowledge about the correspondence pairs, which results

in faster convergence. Using our framework, different likelihood terms can

be combined and used, while the choice is restricted to the Euclidean norm

in standard ICP and CPD. By converting existing non-rigid registration al-

gorithms into GiNGR, we have shown how P-GiNGR can directly convert

these methods into probabilistic versions. Besides generally obtaining a bet-

ter global MAP estimate, the probabilistic version can be used to estimate the

correspondence uncertainty of a registration. In the following chapter, we will

look at different applications for the P-GiNGR framework. We will look at

cases of missing data, where our method provides an estimate of the posterior

over possible reconstructions. Thus our framework can provide uncertainty

measures for critical tasks such as surface reconstruction in the medical do-

main, as required for surgical decision making. Furthermore, we will show

how to build statistical priors that generalize better from partial data observa-

tions.



5
Applications

In this chapter, we utilize the P-GiNGR framework for two different ap-

plications that involve partial data processing, namely:

• How to analyze partial data with a PDM.

• How to create a PDM from partial data.

In Section 5.1 we make use of P-GiNGR on a partial data reconstruction chal-

lenge and show how it performs better than deterministic methods. For ana-

lyzing partial data, we also show applications where we go beyond using P-

GiNGR to obtain the MAP solution as done in Section 4.4.2. In Section 5.2 we

compare posterior estimation methods to analyze partial femur data. We show

how the analytical posterior introduced in Section 2.2.3 vastly underestimates

the remaining uncertainty and highlight the difficulty when using hard corre-

spondence. On a face dataset with missing noses, we discuss in Section 5.3

a limitation of P-GiNGR when using the independent point evaluator as the

likelihood function. In Section 5.4 we show how a femur-PDM can be con-

structed from only partial data observations. We also show how a hand-PDM

can be constructed from increasingly less data and how this influences the

generalization and specificity properties of PDMs. In Section 5.5 we show an

application of creating a PDM constructed from multiple data sources for the
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creation of a molar-tooth-PDM. Finally, we show how P-GiNGR can be used

to create a PDM from disjoint data sources such as Computerized Tomography

(CT) images and surface scans of faces to create a joint face-skull-PDM.

5.1 Partial Femur Reconstruction - Challenge

In this section, we show the results of using P-GiNGR on a femur recon-

struction challenge5. For the challenge, one reference surface is given, 50

femur surfaces for learning a PDM and 10 partial surfaces as targets which

we show in Fig. 5.1. The goal of the challenge is to reconstruct the missing

part of the target surface and get as close as possible to the ground-truth so-

lution in terms of Euclidean and Hausdorff distances. To construct the PDM

we use a GPMM with a mixture of Gaussian kernels. We register the model to

each of the 50 femur surfaces using GiNGR and obtain an average Euclidean

distance between the reference and all the targets of 0.32mm and the aver-

age Hausdorff distance being 2.65mm. To put these numbers in context, the

reference surface is discretized to 18.879 vertices with an average distance be-

tween vertices of 2.00mm, maximum distance of 3.86mm and a minimum

distance of 0.08 µm. With the femur-PDM constructed from the 50 training

surfaces, we use P-GiNGR as ICP, as well as adding random walk proposals

for the rotation and translation parameters, such that we are able to recover the

pose even if the initialization is slightly off. The description of the complete

model parameter vector θ is described in Section 2.3. As a likelihood model,

we use the independent point evaluator as mentioned in Eq. (4.2). This like-

lihood normally measures the Euclidean distance between the reference and

the target. Here we will instead use it to measure the distance between the

target and the reference. The reason for this is the target being a subset of the

reference surface. If measuring from the reference to the target, some areas

will have a large distance due to the missing area on the target surface. After

taking 10.000 steps, we choose the MAP solution from the unnormalized pos-

5 shapemodelling.cs.unibas.ch/femur-reconstruction-challenge

https://shapemodelling.cs.unibas.ch/femur-reconstruction-challenge/
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 5.1: Top row shows the 10 target femurs. On the bottom row we overlay
the reconstructions with the partial targets.

terior distribution. We obtains an average Euclidean distance of 0.60mm and

an average Hausdorff distance of 3.02mm to the partial surface. In Table 5.1

and Table 5.2 we show the results from the challenge which only measures

the distance on the missing part. We end up with the best reconstruction re-

sults on average, where the majority of participants are using a standard ICP

method. We only use enough landmarks (3-5) to make a decent initial align-

ment of the PDM. With the same initial alignment we also perform GiNGR

as ICP as a comparison and obtain a much worse result. Especially one target

(j) has a Euclidean distance of 17mm. This is mainly a result of a bad pose

initialization which we automatically recover with P-GiNGR. In Fig. 5.1 we

also show the MAP reconstructions that we obtain. While we obtain the best

average Euclidean distance to most targets, we only have a single reconstruc-

tion with the best Hausdorff measure. As shown in Section 4.4.2.1 we can
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Table 5.1: Average Euclidean distance score on the femur reconstruction chal-
lenge. The best results are highlighted in bold. If the best reconstruction was
not in top 3, it is shown in the other row. Notice how P-GiNGR obtains the
best result across many of the targets and it even gets lower than 1.00mm on
3 targets as the first method.

Rank Total EEuclidean Distance (mm)
Rank a b c d e f g h i j

1 (P-GiNGR)1.44 1.921.760.920.801.911.181.162.581.180.98

2 1.67 1.561.671.341.252.751.331.292.351.461.68
3 1.85 2.061.581.661.652.291.721.332.731.372.11
Other - 1.111.47- - - - - 2.15- -
GiNGR 5.60 4.455.931.523.473.323.381.718.316.3817.47

Table 5.2: Average Hausdorff distance score on the femur reconstruction chal-
lenge. The best results are highlighted in bold. If the best reconstruction was
not in top 3, it is shown in the other row.

Rank Total HHausdorff Distance (mm)
Rank a b c d e f g h i j

1 (P-GiNGR)5.3 6.35 7.24 4.743.658.25 4.00 5.698.19 3.65 3.53

2 5.64 3.77 5.07 4.854.6011.685.02 5.536.66 3.50 5.75
3 6.47 5.81 7.30 5.358.838.28 5.41 6.658.25 3.00 5.82
Other - 3.31 5.54 3.923.526.95 - 2.28- 5.88 -
ICP 15.25 12.0619.805.948.1616.1212.255.7026.2813.7832.43

however easily change the likelihood function to the distance measure which

is most describing to the task at hand. This is in contrast to traditional methods

in GiNGR which mainly use the Euclidean distance. As also shown in Sec-

tion 4.4.2.1, changing the likelihood to the Hausdorff likelihood negatively

affects the average Euclidean distance measure. What is ultimately gained in

a better Hausdorff distance then produces a worse average Euclidean distance.

As an additional benefit of P-GiNGR we do not only obtain a single best

reconstruction, but a whole distribution of reconstructions. In Fig. 5.2 we

visualize the individual point uncertainty from the posterior distributions for

each target. We both show the sum of variances and the variance along the
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 5.2: Top row shows the sum of variances from the femur posterior
distributions. On the bottom row we compute the uncertainty in the normal
direction. We see that especially if an end of the femur bone is missing, a large
uncertainty is found along the femur shaft as many different correspondence
possibilities are explored. The normal direction uncertainty can in contrast be
used to automatically detect the missing part of the femur.

normals within the reconstructions. We see how the uncertainty in the normal

directions can be used to automatically detect the missing area of the target in

areas of high curvature.

5.1.1 Discussion

In this section we showed how P-GiNGR can be used to obtain good re-

sults on a simple reconstruction challenge. We also showed how the prob-

abilistic method can provide us with a correspondence uncertainty map and

how the uncertainty in the normal direction can be used to automatically de-

tect the missing part of the femur. In the following section we will show how

the underlying task of the reconstruction challenge is in fact ill-posed as there
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does not only exist a single possible reconstruction, but a whole distribution of

possible reconstructions. We will especially focus on how analytical posterior

methods vastly underestimate the variance in reconstruction cases.
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5.2 Partial Femur Surfaces - Posterior Comparison

In this section we compare P-GiNGR to GPR on the task of computing the

posterior distribution when a partial target is given. In medical applications,

a certainty estimate for a reconstruction is often required. This estimate can

be computed as the likelihood of the chosen reconstruction in the distribution

of all other possible reconstructions. These experiments can also be seen as

comparing hard and soft correspondence properties in registration. In Fig. 5.3

we show how the hard correspondence property in GPR has close to zero vari-

ance left even in areas far away from the partial observation. In contrast, with

P-GiNGR we are able to have a more reliable estimate in the uncertainty of the

reconstruction results. When using analytical posterior methods as introduced

in Eq. (2.14) both a fixed pose and fixed point-to-point correspondence is as-

sumed [1, 7]. Furthermore, the analytical-posterior requires an initial dataset

alignment before it can be computed as highlighted in [1]. In absence of ex-

act point-to-point correspondence, those conditions are impossible to fulfill.

With P-GiNGR we are able to estimate the posterior distribution from partial

surface knowledge without having to perform a dataset realignment.

Initially, the reference is aligned to the partial target from a few manually

clicked landmarks. This alignment might not be the global ideal alignment as

we do not have the global frame of the target. In the specific case of the femur

it is therefore advisable to mix an informed CP with a random-walk proposal

Eq. (4.4) for the rotation and translation parameters. In the following, we

will even show how the CP and random-walk proposal can be combined into

a projection-proposal. The experiments in this section have previously been

published in [59].

5.2.1 Projection-Proposal: A Correspondence-Proposal

Once the system has converged, we would ideally like to keep the part of

the PDM fixed where correspondence can be established and is stable, as we

are interested in the posterior distribution given partial surface information.

To do so, we can make a small add-on to the CP which steps are given in
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Figure 5.3: A femur PDM is first registered to the partial surface to estab-
lish point-to-point correspondence. If we assume fixed correspondence, the
posterior is computed analytically. With our method, we assume unknown
correspondence and compute the posterior as a Markov-Chain. Note the cor-
respondence difference to the available data visualized with the yellow mark-
ers on the long and short bone reconstructions. The colored bones show the
uncertainty, computed as the sum of the variances at each landmark with the
different methods. Our method clearly shows more variability (red) far away
from the partial surface, but at the same time has low variability (blue) at the
known area.

Section 4.2.2:

1. Construct corresponding landmark pair

2. Propose a random pose update fromQ(t′|t)+Q(R′|R), while keep-

ing the current shape parameters α. fixed.

3. Compute the analytic posterior.

4. Draw a random surface sample.

5. Scale predicted update with step length.

The highlighted step 2 is the extension to the existing steps in P-GiNGR. For

the estimated correspondence landmark pairs, we define a zero deformation
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Figure 5.4: Visualization of the projection-proposal steps. Step 1: partial
target (red), current reference (black), compute correspondence L based on
closest points. Step 2: Reference after applying a random rigid transformation
(cyan). Step 3: Compute the analytical posterior with L based on Eq. (2.14).
Step 4: Draw a random sample from the posterior distribution (green) and
project back into the model space. Step 5: Adjust step length.

vector for all points on the model which has a correspondence point on the

target (i.e. not on the edge of the surface). Before computing the analytical-

posterior, we then make a random rotation or translation proposal. Just as

in P-GiNGR we use an anisotropic noise term ǫ, to simulate correspondence

shift along the surface, where a low variance along the normal and a higher

variance along the surface is chosen. The steps of the projection-proposal are

visualized in Fig. 5.4. The transition probability can again be computed using

the posterior distribution from step 3 as also shown in Section 4.2.2.1.

5.2.1.1 Projection-Proposal Importance

We need i.i.d. samples to compute the variance, which means that we need

to find the number of samples to be discarded from the Markov-Chain before

an independent sample is found. We compute the auto-correlation of the indi-

vidual shape parameters and look for the number of samples needed to reach

near zero correlation. We report 50 samples for the projection-proposal and

30 × 103 samples for a random-walk. While the random-walk requires 600

times more samples, the projection-proposal with the closest point correspon-

dence estimate is only 6 times slower, making it overall 100 times faster.
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Figure 5.5: Violin and box plots of bone length prediction in mm using the
analytical-posterior and our method P-GiNGR. All plots (a,b,c,d) concern the
same ground-truth bone (length visualised with the red-dashed line), but differ
in how much of the bone is given. The average Euclidean (E) and Hausdorff
(H) distances from the ground-truth surface to the mean surface from the dis-
tributions are in mm.

We compute the bone length variance based on the distance between two

landmarks. The length variation converges at 103 samples with the projection-

proposal. For the random-walk, we need 500 × 103 samples to achieve the

same length variance. With the projection-proposal, we can, therefore, explore

similar variance numbers with less than 1% of the samples needed by the

random-walk.

5.2.2 Experiments

For the experiments, we use 61 femur meshes extracted from CT im-

ages. We use 50 femurs for the femur PDM (femur lengths, mean: 372mm,

min: 322mm, max: 437mm) and 11 for the test-set (femur lengths, mean:

372mm, min: 322mm, max: 441mm). The PDM contains a total of 1622

landmarks. Each test femur is divided into several partial meshes from where

the posteriors are estimated. In Fig. 5.5 a subset of the cuts are shown.
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5.2.2.1 Experimental Setup

We compare the posterior from P-GiNGR with two different PDMs created

from the same data. We will refer to the analytical-posterior computed with-

out aligning according to the dataset as the naive-posterior and the analytical-

posterior with the dataset alignment as the aligned-posterior. The naive-

posterior is created as a normal PDM and the aligned-posterior is computed

based on the estimated corresponding points in the target. This realignment

step is mentioned as a necessary step in [1] when using a PDM to register par-

tial targets. For the aligned-posterior, we need to estimate the observed points

in the PDM. For this we use a standard ICP method with GiNGR.

In the overview image of our method (Fig. 5.3), the posterior variability of

the different methods is visualized with colors on the full femur bone. Very

little variance is maintained in the naive-posterior, which highlights the impor-

tance of dataset alignment when computing the analytical-posterior. P-GiNGR

with the projection proposal contains 2 to 3 times more variability than the

aligned-posterior, suggesting that the full variability cannot be obtained using

hard correspondence.

5.2.2.2 Length Estimation of Partial Femurs

We compare the mean and the variance of bone lengths of the different

posterior estimation methods. A landmark is placed at each end of the femurs

and the variability of the distance between the two landmarks is reported. For

the analytical-posteriors, we randomly sample 103 shapes from the posterior

models to be used for the estimate. For the projection-proposal we take 103

samples with 50 sample spacing in between. The bone length results for test

femur 1 are shown in Fig. 5.5. Notice the difference between the results for

partial bone a and c. More data is available in c, which results in a more

narrow distribution, whereas the correspondence used in c is worse, making

the ground-truth surface very unlikely under its distribution. The P-GiNGR

results of the remaining test femurs are shown in Fig. 5.6.

We observe that both of the analytical-posterior methods sometimes fail to

estimate the ground-truth length within their variability for most of the cuts.
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1

a

Figure 5.6: Violin and box plots of bone length prediction in mm. All plots
of different ground-truth bones. The posteriors are computed with P-GiNGR
and the projection proposal.

In contrast, P-GiNGR can explain the shape length accurately.

5.2.2.3 Importance of Correct Correspondence

The quality of a surface reconstruction can be measured with the aver-

age Euclidean or Hausdorff distance to the ground-truth. These measures are,

however, not a good indicator for the registration quality when large uncer-

tainty exists in the correspondence. In Fig. 5.7 we show the same bone length

experiment as in Fig. 5.5, but only for the aligned-posterior computed using

different correspondences. The different correspondences have been found by

initializing the PDM either as a very short, medium or long bone. We see that

a close to perfect reconstruction can be found if the ground-truth correspon-

dence is known, but at the same time can extremely over or underestimate

the bone length if wrong correspondences are used. The average Euclidean

distance from the partial surface to the reconstruction is, in all the cases, less

than 0.25mm, which suggests that the model represents the surface well in the

available part.

5.2.3 Discussion

It is difficult to infer the full surface from a bone fragment. This is due to

missing exact point-to-point correspondence. Existing methods deterministi-

cally find a set of correspondences to estimate the posterior using GPR. We

showed how this can result in overconfident posterior estimates if incorrect

correspondences are used. We have shown how previous methods even fail to
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Figure 5.7: Violin and box plots of bone length prediction in mm. All plots
concern the same ground-truth bone (length visualized with the red-dashed
line). The posteriors are computed with the aligned-analytical-posterior
method and differ only in the correspondence which has been used. The aver-
age Euclidean (E) and Hausdorff (H) distances from the ground-truth surface
to the mean surface from the distributions are in mm. (a) and (b) refers to the
same partial shapes as in Fig. 5.5.

explain the ground truth solution under their distributions in an experimental

setup with synthetic data. By using P-GiNGR to perform probabilistic regis-

tration, we can estimate the posterior distribution of reconstructions without

relying on hard correspondences. With P-GiNGR, both correspondence and

reconstruction estimates are more accurate than with a traditional analytical

approach. We are also able to more reliably estimate the uncertainty of the

reconstruction results.
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5.3 A Missing Nose - Surface Reconstruction

In this section, we want to highlight one of the difficulties with using P-

GiNGR, namely how the likelihood function should be designed. We perform

a reconstruction experiment of missing data on face scans. The main diffi-

culty with the face dataset is the incompatibility with the independent point

evaluator as the likelihood function. In Section 5.1 we changed the direction

of the distance function as the target was a subset of the reference surface. In

Fig. 5.8, we show that there is no perfect overlap between the reference and

the target surfaces. The likelihood function, therefore, needs to take into ac-

count that a different number of points might be evaluated in each iteration. In

this section, we show a possible simple extension to overcome this limitation.

We compute the posterior distribution of registrations for faces where the nose

has been removed. As the face reference, we use the PDM part of the publicly

available Basel Face Model (BFM) from [27] together with 10 available face

scans as the targets. For this experiment, we use a mixture of CP using ICP

and a random-walk proposal for the pose parameters. For each target, we take

10.000 samples and use every 200th sample to estimate the variance of the

distribution.

If the number of points that are used to compute the independent point

likelihood differ from iteration to iteration, the likelihood function is not well

defined, so we might see large jumps in the likelihood value. We therefore

need to take the number of evaluated points into account. One possibility

from the literature is the collective average likelihood as introduced in [83]:

P (ΓT |α) = N (dCL(ΓT ,Γ[α]); 0, σ2
CL), (5.1)

where

dCL =
1

N

nlm
∑

i=1

‖Γi
R − Γi

c‖
2. (5.2)

Here the closest point of Γi
R on the target is Γi

c and nlm is the number of

landmarks in the reference mesh ΓR. The usage of the collective average like-

lihood gives a good global fit, but many of the intrinsic features are missing.
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Figure 5.8: Face registration experiment. (a) target surface, (b) MAP estimate,
(c) overlay of target and MAP, (d) visualization of the correspondence uncer-
tainty (sum of point variance), (e) visualization of the posterior uncertainty in
the normal direction (color-map, red: large variance, blue: no variance).
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Figure 5.9: Face registration experiment. (a) target surface, (b) MAP estimate,
(c) overlay of target and MAP, (d) visualization of the correspondence uncer-
tainty (sum of point variance), (e) visualization of the posterior uncertainty in
the normal direction (color-map, red: large variance, blue: no variance).
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The collective average likelihood is a valid likelihood function as a single

likelihood is used in each iteration which takes the average distance between

the surfaces into account.

In [61] we experimented with combining the collective average distance

likelihood with the Hausdorff distance likelihood to obtain a good average

registration while also avoiding individual points being far off:

P (ΓT |α) ∝ N (dCL(ΓT ,Γ[α]); 0, σ2
CL) · Exp(dH(ΓT ,Γ[α]);λH). (5.3)

However, from a practical side, it is very difficult to adjust the hyper-

parameters of the two distributions to get the desired result. Additionally,

we do not end up with a valid pdf function when multiplying the two pdfs.

Therefore, as an alternative likelihood function, we choose to simply scale the

independent point evaluator based on the number of corresponding points nc

in each iteration:

P (ΓT |α) ∝
1

nc

nc
∏

i=1

N (dl2(Γ
i
T ,Γ[α]i); 0, σ2

l2). (5.4)

We find that the hyper-parameter is easy to set and can be kept constant over

the 10 faces we have as targets. Most importantly is that the acceptance rate is

kept at 20-30%, whereas it drops to near 0% when using the collective average

distance for some targets. In Fig. 5.8 and Fig. 5.9, we show the correspondence

uncertainty from the posterior registration distribution. Note however that this

likelihood function is also not a valid pdf due to the change in evaluated points

in each iteration.

With P-GiNGR we infer a larger correspondence uncertainty in the outer

region. However, as the surface is observed, the uncertainty is low in the

direction of the face surface normals but high within the surface. This is be-

cause there is no anatomical distinctive feature to predict the correspondence

more precisely. Higher uncertainty is also inferred on the nose, where data is

missing. In contrast to the outer region, the uncertainty in the direction of the

normal of the reconstructed nose surface is large for most of the targets. This

shows that uncertainty visualization could possibly be used to detect miss-

ing areas. As quantitative results, we obtain an average Euclidean distance
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of 0.55mm and an average Hausdorff distance of 5.79mm over all the tar-

gets. In contrast, with the collective average likelihood, we get 0.73mm and

6.10mm.

5.3.1 Discussion

In this section, we highlighted one of the difficulties when using P-

GiNGR, namely the design of likelihood functions. We showed an alternative

likelihood function that can be adapted to work for target surfaces that are not

a strict subset of the PDM or the target. Unfortunately, this likelihood func-

tion is merely a hacky solution that does not provide us with a theoretically

sound likelihood function. The design of a more general likelihood function

that works across a large range of different domains is therefore up for future

research. In Section 5.6 we will be looking more into designing application-

specific likelihood functions. But in the following section, we will first explore

how we can directly use P-GiNGR to construct PDMs from partial data.
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5.4 Shape Priors (PDMs) from Pieces

In this section, we show that P-GiNGR can be used as a principled way to

go from only partial data observations to a PDM, without the need for multi-

ple intermediate steps. The experiments in this section have previously been

published in [60, 61]. From Bayesian statistics, we know that there are three

ways to handle missing data [32]:

• Discard observations with any missing values.

• Rely on the learning algorithm to handle missing values in the training

phase.

• Impute all missing values (complete the data-matrix before using any

learning algorithm).

From [26] we know that if we choose a reasonable missing-data model, the

imputed dataset is likely to provide a more accurate estimate than a strategy

which discards the data with missing values. In our setting where we are only

working with partial data, it is not even a possibility to discard the data. For

data imputation, a range of different strategies exist. The simplest strategy is

to impute the missing values with the mean or the median of the non-missing

values for that feature. This approach assumes that the missing values were

known in the complete-data and will bias the variance of the dataset towards

zero. One would, in the worst case, end up only learning the mean shape of the

dataset and nothing about the shape variation. A better option for imputation

is to perform regression based on the remaining dataset. This usually overesti-

mates correlations which are then reflected by the model, as no uncertainty is

given to the missing part. Instead of a single imputation, we can make use of

multiple imputations. Multiple imputation was initially introduced in [81] to

fill out non-responses in surveys. If the data is arbitrarily missing, a MCMC

method can be used to create multiple imputations by simulating draws from

a Bayesian predictive distribution given the partial data [101]. An overview of

the multiple imputation method is visualized in Fig. 5.10. We use P-GiNGR to

compute the posterior distribution of registrations for each partially observed
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Multiple Imputations PDM 

from imputed data

Missing-data

 Model

Partial data

Green: Mean

Black: 1st PrincipalComponent 

           +/-3 standard deviation

Red: Partial data

Orange: Ground-truth

Black: Posterior samples

Figure 5.10: Overview of our method. Given the partial data (red), the
missing-data model (GPMM) is used to draw samples from the posterior dis-
tribution over registrations to impute the data. Finally, multiple imputations
from each partial data item are used to compute the PDM.

target surface. The posterior distribution contains the distribution of possi-

ble completions under our missing data model. These completions are in the

Bayesian setting referred to as multiple imputations. From the posterior dis-

tribution P (α|ΓT ), we randomly sample I imputations, such that the inferred

data-matrix will beX ∈ R
dn×NI , withN being the number of target surfaces.

By including multiple imputations into the PDM, we are able to take the un-

certainty of the imputation under our missing-data model into account. The

PDM can then be computed using standard PCA on the complete data-matrix.

5.4.1 Experiments

In the following experiments, we first demonstrate our method on a syn-

thetic dataset of 2D hands and then a 3D clinical dataset of femurs with artifi-

cially removed parts. As we have complete hands and femurs, we can compare

our method with the ground-truth PDMs. For a model to be useful, it has to

be specific - i.e. only able to represent valid shapes. Alternatively, a model

might be very general, making it able to generalize to any type of new data,

but this at the cost of explainability. To evaluate PDMs, we use three com-

mon measurements: specificity S(PDM) (evaluate if the model only generates

instances that are similar to those in the training set), generalization G(PDM)

(the ability to describe instances outside of the training set) and compactness
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Figure 5.11: The dataset of hands with marked fingertips.

C(PDM) (a model’s ability to use a minimal set of parameters to represent the

data variability) as described in [89]. From these measures, specificity and

generalization are the most important measures when using the model as prior

information in other learning algorithms. We want the model to stay within

the shape space, but also to be able to explain new data from the same shape

space. For most of the experiments we do not plot the compactness as this is

less important and very similar for all of the models.

The target surfaces in all the experiments have been initially landmark

aligned to a reference surface. For the synthetic experiments where parts are

cut from the target surfaces, we still keep the global alignment to avoid factor-

ing pose difference into the model comparison.

5.4.1.1 2D Synthetic Hand Experiment

For the 2D hand experiment, we make use of 12 synthetic 2D hand surfaces

as the targets, visualized in Fig. 5.11. An additional hand surface is used as

the reference surface to construct a hand-GPMM with a mixture of Gaussian

kernel as shown in Fig. 5.12. The computations of the generalization measures

for the hand models are computed by a "leave-one-out" approach. For the

specificity measure, we use 1000 random samples.

(a) Mean, +/-3 (red/blue) standard devia-
tion of the 4 first GPMM components.

(b) Random samples from the GPMM.

Figure 5.12: Visualization of the analytically defined 2D hand-GPMM.
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(a) 5 (b) 10 (c) 15 (d) 20 (e) 30 (f) 40 (g) 50 (h) 60 (i) 70 (j) 80

Figure 5.13: Hand example of partial data. The caption lists how much of each
shape has been removed (5-80%) starting from the fingertip of the thumb.

Missing Finger Experiments. We clip the hands dataset starting from a

landmark on the top of each finger and cut away an increasing amount (5-

90%), as visualized in Fig. 5.13. We perform 2 different experiments with this

setup. In the first experiment, a random finger is increasingly cut away from

each of the hands. In the second experiment, all 12 hands are increasingly

missing the thumb. In Fig. 5.14 we show the model measures of the random

missing finger experiment and in Fig. 5.15 we show the model measures of

the missing thumb experiment. From the figures we see that both experiments

follow the same trend. We see that the models computed from multiple impu-

tations are able to generalize much better than when using the MAP or mean

solutions. Note, that the curve flattens for the MAP and the mean experiments

as only 12 surfaces are used to compute these models, whereas we use 100

imputations for each of the 12 target surfaces in the multiple imputation ex-

periment. If less than 30% of the surfaces are missing, we also obtain a better

specificity measure compared to the MAP and mean solutions. Finally, we

see that the multiple imputations are able to maintain much more of the total

variance within the model when large parts of the targets are missing.
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Figure 5.14: Hand model measures from the random missing finger experi-
ment. The left column shows the results for models computed with the MAP
from each posterior distribution. The middle column is computed using the
mean surface from each posterior distribution. The right column shows the
results using 100 imputations from each of the 12 posterior distribution. The
last-mentioned model is clearly superior.
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Figure 5.15: Hand model measures from the missing thumb experiment. The
left column shows the results for models computed with the MAP from each
posterior distribution. The middle column is computed using the mean surface
from each posterior distribution. The right column shows the results using 100
imputations from each of the 12 posterior distribution. The last-mentioned
model is clearly superior.
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Figure 5.16: Reference (left) and random samples from the femur-GPMM.

5.4.1.2 3D Femur Experiment with Ground-Truth

We use a Gaussian kernel for the femur-GPMM. The reference surface and

random samples from the femur-GPMM are shown in Fig. 5.16. We use the

publicly available dataset of 50 complete femurs as also used in Section 5.1

and Section 5.2, where the surfaces are extracted from computed tomography

images6. We choose ten complete femur surfaces as our training data, from

where we clip a varying amount (5-25%) at different landmark locations. For

eight of the bones, this clipping was done in a single location. For the re-

maining two, we spread the removal over four locations. The partial dataset

is visualized in Fig. 5.17. Similar to before we build PDMs from multiple

imputations, the MAP solution and the mean and compare them additionally

to the ground-truth PDM. For the specificity computation, the ground-truth

registrations are used (these are also used to build the ground-truth PDM). For

the generalization, we use 40 registered surfaces which are not included in

the dataset of the PDMs. In Fig. 5.18 we see an example of a target shape

(red) with multiple different imputations. We see how both the mean and the

MAP solutions fail to perfectly predict the true shape. From the random sam-

ples we see that there is a broad distribution of possible imputations for the

missing part. In Fig. 5.19 we compare PDMs created from the MAP, mean

and multiple imputations. In the case of multiple imputations, we compare

models created with a different number of samples. From the given example,

6 Available at the SICAS Medical Image Repository [46]
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Figure 5.17: The partial femur data that is used to construct the PDM. Num-
bered 1 to 10 from left to right.

we see that by using 5 or more imputations, we are able to create PDMs that

generalize better, than by using the MAP or the mean solutions, while also

maintaining better specificity.

5.4.2 Related Work

PDMs are usually built from complete and healthy shapes in point-to-point

correspondence. However, in the medical domain, either the data is captured

because there is a pathology, or it is scanned only partially to capture the essen-

tial part of the structure while minimizing the radiation danger. Hence, usually

(a) Target femur 1. (b) Target femur 5.

Figure 5.18: Posterior distribution visualizations of the two first partial femurs
from Fig. 5.17. Red: Partial surface, Orange: Ground-truth surface, Green:
MAP, Blue: Mean, Black: Posterior samples. It can be seen that the posterior
samples better cover the ground-truth than both, the MAP and mean shape.
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Figure 5.19: Femur model measures. Multiple imputations lead to a better
generalization, while also keeping a better specificity than models built from
the MAP or mean imputations.

only a part of the healthy anatomy is observed. Several methods address the

construction of PDMs where some of the training shapes are partial. In [43],

each landmark is assigned a probability of being an outlier. This is used to

compute a mean of the dataset where landmarks with lower probability of be-

ing an outlier have more influence on the mean shape. In [51], the training

surfaces are divided into patches and each patch is assigned a probability of

being an outlier. The outlier detection is performed with PCOut [24] which

identifies samples that do not fit well into the distribution. Probabilistic PCA

[90] is then used to iteratively build the PDM and replace the outlier parts with

healthy parts. In [30], the shape model is computed using robust PCA (RPCA)

to be able to marginally improve the model through partial data. In [56], they

extend this idea to have a probability of being an outlier assigned to each land-

mark in a shape. The authors then extend their method to a robust kernel SSM,

to have a non-linear model for better compactness [57]. All of the aforemen-

tioned methods use off-the-shelf registration methods and focus on building

the models robustly from the noisy registration results. Often the registrations

shrink substantially where parts are missing, to which the learning algorithm

then has to be robust. The majority of the methods decompose the data matrix

into a low-rank matrix containing correct data and a sparse matrix with the

corrupted data. These matrices are mainly found via convex optimization and
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usually require non-corrupted data to be present in the dataset.

In comparison, with P-GiNGR, we do not need to detect if parts are out-

liers or to assign weights for each landmark in a shape.

5.4.3 Discussion

In this section, we showed a principled method to create PDMs from par-

tial data observations. Our method uses the idea of multiple imputation from

Bayesian statistics for point-to-point registration of partial data. With this, we

can create multiple imputations of a single partial data observation with the

use of P-GiNGR, to span the data-matrix. We show how this improves model

specificity and generalization. Using GPMMs, we can not only design the

model in an analytical way to encode smoothness or symmetry but also iter-

ate the model building process. Once data has been registered, we can create

multiple imputations to compute a statistical kernel. The statistical kernel can

then be augmented and the partial data can be registered again. In the second

iteration, the imputations will be partly based on a kernel learned from data,

and therefore be more reliable than the imputations based purely on an ana-

lytical defined kernel. In the following section, we will show how the general

principles introduced in this section can be used to create a PDM from hybrid

imaging with complementary overlapping regions.
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5.5 PDMs from Overlapping Data

In this section, we show an application of how a molar-tooth-PDM can be

created from partial data. This setting is different from the previous section, as

we are working with a hybrid of imaging with complementary and overlapping

areas. In Fig. 5.20 we show the raw surfaces that we use to build the PDM

from. Ideally, the tooth-PDM would be created from scans of full teeth in high

quality. However, this requires the teeth to be pulled out and is therefore not

a viable solution in creating a model with a broad population distribution. We

base the reference surface on a scan of an extracted tooth. We manually edit

the reference surface to remove patient-specific deformations and discretize it

with ∼ 25.000 vertices, such that a higher detail level is found in the crown

level of the tooth. To capture the tooth root shape, we use surfaces extracted

from CBCT images with a U-Net-based segmentation network [80]. The teeth

extracted from the CBCT data are very noisy and with very little visible details

in the crown area. The idea is therefore to append the high frequency crown

details from the intraoral scans to the CBCT data. It should be noted that the

CBCT data and the intraoral scans are from different patients. Because of

that we cannot manually fuse the two data sources to create the dataset that

Figure 5.20: Visualization of the molar tooth training data. The reference sur-
face is depicted on the left side with the surface wireframe. The remaining
figures are the (top) segmented CBCT surfaces (bottom) intra-oral scans (bot-
tom). Note that the intra-oral scans and the Cone-beam computed tomography
(CBCT) data are obtained from different patients.
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Figure 5.21: Completions of intraoral scans. The intraoral scan is shown in
yellow. In gray we show different samples from the P-GiNGR posterior. In
the bottom row, we zoom in on the crown area and see that many of the larger
structures are captured in the registration, but many high-frequency details are
still smoothed out.

we need. In total, we make use of 30 complete teeth extracted from CBCT

and 200 intra-oral scans of lower-molar teeth. The procedure for building the

tooth-PDM from the hybrid dataset is:

1. Register the CBCT data using P-GiNGR.

2. Create a statistical kernel from the registered CBCT data.

3. Augment the PDM in the crown region.

4. Register the intraoral scans using P-GiNGR.

5. Create the tooth-PDM from multiple imputations.

For step 1, we use the dot-product kernel together with a Gaussian kernel

(Eq. (2.8)) with a large β value to avoid fitting all the noisy bumps as seen in

the extracted CBCT data in Fig. 5.20. In step 3 we only augment the PDM

in the crown region by the use of a change-point kernel, which was also used

in [27]. The augmented kernel is a multi-scale of different Gaussian kernels

and the statistical kernel learned from the CBCT data. In Fig. 5.21 we show

an example of the registration performed in step 4, where a single intraoral
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PC3:-3 PC2:-3 PC1:-3 Mean PC1:+3 PC2:+3 PC3:+3

Figure 5.22: Comparison of the first 3 principal components (PC) from the
PDMs created from (top) CBCT data only, (bottom) mixture of CBCT data
and intraoral scans. -/+3 denotes 3 standard deviation.

target has many different completions. In Fig. 5.22 we compare the major

directions of variation between the final tooth-PDM and the PDM created in

step 2 from only using the CBCT data. The expectation is that the first prin-

ciple components will stay almost the same, while the intraoral data mainly

add deformation information in the crown area. We see that the distribution

has changed slightly based on the larger dataset, but the root deformations

from the CBCT model are largely kept the same. As we have no complete

combined data available, it is difficult to quantitatively assess the model using

the model metrics (specificity, generalization, compactness). We are therefore

only qualitatively evaluating samples from the tooth-PDM. In Fig. 5.23 we see

the main difference between the model created in step 2 and step 5, namely

the detailed crown deformations.

The majority of literature focuses on creating PDMs from complete data.

The most similar approach to what we have shown in this section is [72]. They

create a face model from coarse full head scans and highly detailed face scans.

They show how this can either be done using a regression-based solution to

complete the partial data (in their case the face scans) or by directly smoothing

two kernels using the GPMM framework. The main problem with this method

is the need for smoothing. If using a regression-based solution, one needs to
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Figure 5.23: Comparison of random samples from the PDMs created from
(top) CBCT data only, (bottom) mixture of CBCT data and intraoral scans.
Notice how the samples from the CBCT are completely smoothed out, while
the addition of the intraoral scans adds details to the crown region.

smoothen the surfaces in the overlapping region between the high detailed

partial data and the coarse data. The same goes for smoothing the kernels,

which we found can be problematic, especially if the mean deformations are

different from one another as can be observed in Fig. 5.22 when comparing

the two mean surfaces.

5.5.1 Discussion

In this section, we showed an additional use case of the P-GiNGR frame-

work for creating PDMs from a hybrid of overlapping imaging with different

properties. While further evaluation still needs to be carried out to fully val-

idate the statistical properties of the combined model, the qualitative results

look promising and the method does not require any hand-tuning to smoothly

blend between different kernels. However, as shown in Fig. 5.21, there is still

room for improvements in the hyper-parameter settings of P-GiNGR in order

to get all the high-frequency intricate details from the intraoral scans. One

possible solution to overcome this, would be a few deterministic ICP itera-

tions with a very low noise assumption, or alternatively, directly projecting

the model onto the target. In the following section, we will go a step further

and show how PDMs can be created from independent data with no overlap-

ping regions.
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5.6 PDMs from Disjoint Data

As a final application of the probabilistic registration framework, we show

how to create a combined face-skull-PDM from two disjoint data sources,

namely face surface scans and skull surfaces from Magnetic Resonance Imag-

ings (MRIs). For this application, we are working with data that is already in

point-correspondence and from which an independent face-PDM and an inde-

pendent skull-PDM has been created. The main idea behind this experiment

is to show alternative usages of the probabilistic framework other than estab-

lishing point-correspondence in a dataset for the creation of PDMs. The mean

of our final combined face-skull model is illustrated in Fig. 5.24. In this appli-

cation, we will not be using CP but instead a standard random-walk proposal.

The emphasis is instead on the careful design of application specific likelihood

models.

The most obvious use for a combined face-skull-PDM is facial reconstruc-

tion, which is the process of recreating the face of an unknown individual

solely from their skeletal remains [97]. Reconstructing the face shape from

a skull is an ill-posed problem. It is commonly known that the facial recon-

struction process is highly artistic and different forensic artists might produce

different face predictions [98]. One reason for the problem to be ill-posed is

that many features of a shape are not due to the skull itself, but due to genetics

Figure 5.24: Illustration of the face-skull model with the face fully visible,
one side visible and fully visible with an opacity of 70%.
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and environmental factors such as diet and ageing. As a result, for a given

skull there exists a whole distribution of possible faces. A combined model

would likewise not only provide us with a single best prediction, but a full

distribution of possible faces given a skull. In Section 5.6.3 we will discuss

alternative methods that have been used for facial reconstruction. In [58] we

showed how the combined model can be used for craniofacial superimposition

within forensics. This is the task of comparing a photo of a skull to a photo

of a face to evaluate their similarity [93]. We did so by ranking a database

of faces given a skull. However, in this thesis we mainly focus on the model

construction and on applications directly applicable to medical image analysis.

5.6.1 Method

We model the joint face-skull distribution and build a joint face-skull-

PDM. Because it is difficult or even impossible to observe the joint face-skull

distribution directly, we construct it from the conditional distribution over face

shapes given skull shapes. Fig. 5.25 shows the general idea of combining

the skull and the face model. The two models are independent and contain

scans from different individuals. We compute the posterior distribution of

faces given a skull using MH. A sparse set of distance constraints between

the surface of the skull and the surface of the sampled faces is everything the

method needs. The distance constraints are known as tissue-depth markers

within facial reconstruction and represent the depth of the tissue in between

the skull and the face surface such as fat, muscle fibers and cartilage. We gen-

erate face-skull pairs by sampling from the posterior face distribution found

for each skull. Then, we model the joint distribution according to the gener-

ated data.

5.6.1.1 Training Data

We use three sources of data; the publicly available BFM, a skull-PDM

and tissue marker data as defined in the publicly available T-Table [87, 88] and

shown on a skull shape in Fig. 5.26. All three sources have to our knowledge
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Skull model

Face model

Face-Skull model

Figure 5.25: Combining the models. We map each skull in the skull-PDM to
a distribution of face shapes in the face model. The face-skull model is a joint
distribution of the individual skulls from the skull-PDM and their individual
face distributions.

no overlap in the individuals from which the data was obtained.

5.6.1.2 Tissue-depth Gaussian assumption

The Gaussian distribution is assumed for each of the individual tissue-

depth markers. While the distribution of tissue-depth over age, weight and

gender differences might follow a more complex distribution, tissue-depth

studies do only provide mean and standard deviation and not the individual

measurements. However, the nature of our method would allow easy use of

more intricate distributions such as Gaussian mixture models if one has raw

data measures available. As our raw skull data does not contain any metadata,

we use the T-Table which uses the law of large numbers to combine measures

from a variety of age, Body Mass Index (BMI) and gender groups. If skull
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(a) (b)

Figure 5.26: Tissue-depth markers placed on a skull. The landmark distri-
butions are shown at the end of the vectors where one standard deviation is
visualized. (b) shows a transparent face shape fit to the tissue-depth measures
in (a).

metadata would be available, alternative data tables could be used to limit the

variance and update the mean, as found in [18].

5.6.1.3 Simulating the Joint Face-Skull Distribution

We model the joint face-skull distribution as a multivariate normal distri-

bution over face and skull shape.

ΓF ,ΓS ∼ N (µF ,ΣF ),N (µS ,ΣS) (5.5)

As we cannot observe the full joint face-skull distribution directly, we con-

struct it from the skull shapes and tissue depth marker information. Probabil-

ity theory allows us to write the joint distribution as a product of a conditional

distribution and a prior. We write the joint probability of observing a specific

face-skull pair as the distribution of face shapes ΓF given the skull shape ΓS

and the prior of the skull shape.

P (ΓF ,ΓS) = P (ΓF |ΓS)P (ΓS) (5.6)

The skull-PDM provides the prior P (ΓS). The posterior distribution over

plausible face shapes, given a skull shape, consists of all the face shapes that
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MCMC

Probabilistic Model

Skull shape Tissue-depth markers

Face model Posterior face distribution

Figure 5.27: Illustration of the MCMC fitting procedure.

fulfill the given tissue depth constraints. Just as in P-GiNGR, we approximate

the posterior distribution with MH. The posterior distribution we are interested

in is the face shapes given an observed skull shape. Having a posterior dis-

tribution over faces given a skull allows us to construct the joint distribution.

According to Eq. (5.6), we first sample a random shape from the skull-PDM.

Then we approximate the posterior face distribution given the skull. To cre-

ate a face-skull-PDM, we fit a Gaussian distribution to the skull-PDM sam-

ples and their corresponding posterior face shape samples. Fig. 5.27 gives an

overview of how we approximate the posterior. Fig. 5.28 shows how we build

the joint face-skull-PDM from skull samples and posterior face shape samples.

Just as in Section 5.4 we use multiple imputations to complete the face-skull

pairs given a skull instance.

MCMC fitting
Statistical Skull 

Model

Sample

Compute PCA
Posterior
sampling

Figure 5.28: Pipeline describing how to compute the face-skull-PDM by com-
bining skull samples with the posterior face distributions found with MCMC.
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5.6.1.4 Likelihood Model

In this section, we describe how the probability distribution over possi-

ble face shapes is modeled (determined by the model parameter vector θ as

introduced in Section 2.3) to fit a given skull. We model the likelihood as:

P (θ|Dtvi, Dsym, c,Dcs), (5.7)

where Dtvi, Dsym, c, Dcs are four different measurements that are derived

from the given skull and the tissue depth markers. We will explain them in

detail below. Using Bayes theorem we can write the conditional distribution

as a product of its prior probability and a likelihood term. As with P-GiNGR

we are only interested in comparing samples, so the evidence term can be

ignored. By assuming independence between the individual likelihoods, we

write it as the product:

P (θ|Dtvi, Dsym, c,Dcs) ∝

P (θ)Ptvi(D
tvi|θ)Ptvs(D

sym|θ)Pfs(c|θ)Pcs(D
cs|θ). (5.8)

With the face shape prior P (θ) we penalize unlikely shapes. We enforce the

tissue-depth distribution with the tissue-vector intersection likelihood Ptvi.

Tissue-vector symmetry is encouraged by Ptvs and face-skull intersection is

discouraged with Pfs. Furthermore, we enforce correspondence in a single

point with the likelihood Pcs.

For a given skull shape ΓS we evaluate the probability of a face shape

from its face model parameters θ. We place nlm landmarks lmS
i ∈ R

3, i =

1...nlm on ΓS . For each landmark we have a tissue-depth vector vS
i ∈ R

3

with direction towards the face surface (see Fig. 5.26), which is obtained from

[88]. We define the landmark lmF
i [θ] ∈ R

3 as the intersection point of vS
i

with the face model ΓF [θ].

Tissue-vector intersection We evaluate where the nlm vectors vS
i intersect

with the face model at a given θ by the distance di ∈ R for each vector. di
is found from the skull landmark lmS

i to the intersection landmark lmF
i (θ)

on the face shape as di(θ,ΓS) = ‖lmF
i [θ] − lm

S
i ‖, with Dtvi denoting the
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di distances for all the tissue-depth vectors. The probability over all the nlm

points is the product of each individual likelihood term:

Ptvi(D
tvi|θ) =

nlm
∏

i=1

N (di(θ,ΓS), σ
2
i ) (5.9)

with σ2
i being the variance of the individual tissue-depth vector from the T-

Table [87, 88].

Tissue-vector symmetry We extend the evaluation of tissue-vector intersec-

tion by evaluating how similarly mirroring vectors intersect the face surface.

Each landmark lmS
i not placed in the center of the head has a mirror landmark.

There is a total of ncenter points placed in the center of the head. We define

lmS
−i ∈ R

3 to be the mirror point of lmS
i and v

S
−i ∈ R

3 to be the mirror vector

of vS
i around the sagittal plane. Let d−i(θ,ΓS) be the tissue-depth vector in-

tersection mirroring di(θ,ΓS), then dsymi (θ,ΓS) = ‖di(θ,ΓS)−d−i(θ,ΓS)‖

is the difference between a tissue-vector intersection depth and its mirror vec-

tor intersection depth. Dsym is the tissue-depth intersection difference. The

combined likelihood for all the mirroring points is:

Ptvs(D
sym|θ) =

(nlm−ncenter)/2
∏

i=1

N (dsymi (θ,ΓS), 1) (5.10)

The likelihood will return a high probability if the symmetry vectors intersect

the face surface at the same distance. Fig. 5.29a shows a sample where the

tissue-vector symmetry likelihood was not used.

Face in skull detection The intersection likelihood in Eq. (5.11) penalizes

the number of points c(θ) of the face model which intersect the skull shape

ΓS . By choosing λ large, faces intersecting with the skull region become very

unlikely.

Pfs(c|θ) ∼ Exp(λ) (5.11)

Point-correspondence In our implementation, we have made use of a sin-

gle point-correspondence instance. The point is placed in the center of the
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(a) (b)

Figure 5.29: Face-skull alignment problem from missing likelihood terms. (a)
Missing tissue-vector symmetry likelihood. The center of the face and the
skull do not align. This is especially visible at the nose which is shifted to
the side. The illustrated tissue-vectors have the same length and are not inter-
secting the tissue at the same distance on both sides of the face. (b) Missing
point-correspondence likelihood. The face is rotated slightly which can be
seen from the red line which should be horizontal as in (a). The nose of the
skull is also not aligned at the center of the nose in the face, similar to the
problem without the point-correspondence.

face just below the nose. The correspondence point on the skull is placed

just below the anterior nasal spine. The likelihood is necessary in order to

avoid misalignment at the nose region as shown in Fig. 5.29b. The gen-

eral point-correspondence likelihood consists of ncenter points where the ex-

act face intersection position on the face model surface has been defined as

lmFideal

j ∈ R
3, with j = 1...m. The distance between the actual intersec-

tion point pFi (θ,ΓS) and the ideal intersection point lmFideal

j is found from

dcsi (θ,ΓS) = ‖lmF
i (θ,ΓS) − lm

Fideal

j ‖, with Dcs denoting all the dcsi dis-

tances. The combined likelihood is then:

Pcs(D
cs|θ) =

m
∏

i=1

N (dcsi (θ,ΓS), 1) (5.12)
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PC2:-3 PC1:-3 Mean PC1:+3 PC2:+3

Figure 5.30: Mean and the first two principal components of the face-skull
model conditioned on a face in an MRI. Blue: ground-truth face, green: face-
skull model conditioned on the face, red: skull from the face-skull model.
Notice the skull from the face-skull model (red) in the back and on top of the
head. The model is very good in describing the correct placement of the skull
over the 2 components.

5.6.1.5 Approximating the Probabilistic Model

As in Chapter 4 we approximate the distribution Eq. (5.7) by sampling di-

rectly from the unnormalized posterior distribution with MH. For the proposal

we choose multiscale independent random walk proposals for the shape, rota-

tion and translation parameters. These individual proposals are combined into

a mixture proposal for the full parameter vector

Q(θ′|θ) = zαQ(α′|α) + ztQ(t′|t) + zRQ(R′|R) (5.13)

where zα, zt, zR are weighting factors of the different proposal distributions

with zα + zt + zR = 1. The standard deviations for each of the proposal

distributions have been scaled to have a 20% acceptance rate.

5.6.2 Applications of a Face-Skull PDM

We obtain a distribution over plausible skull shapes by conditioning on a

face shape. An immediate application for this is the segmentation of the skull

from an MRI. Segmenting the skull in an MRI is a difficult task as the bone

has the same intensity as air and consequently they cannot be distinguished.

Therefore, any successful segmentation method necessarily needs to include

a strong shape prior. In contrast, segmentation of the face from an MRI can
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Figure 5.31: Random face samples from the posterior model conditioned on
skull.

be done using simple threshold segmentation. Hence, by conditioning on the

known face shape, we can obtain a shape model that only assigns a high prob-

ability to skulls which fit the given face. We have illustrated this approach

in Fig. 5.30, where we show the mean and the first two principal components

(± 3 standard deviations). We observe that while the model still has the flex-

ibility to adapt to the image, it already constrains the solution space well, and

a model based segmentation algorithm for this task would be likely to benefit

from such additional prior knowledge.

In Fig. 5.31 we qualitatively look at random samples of the posterior model

of faces, when conditioning the combined model on a skull. We observe that

the faces from the posterior face distribution look different from one another

but are similar in shape.

5.6.3 Related Work

Forensic artists reconstruct the face surface by adding layers of muscle

fibers and placing tissue depth markers on the skull whose identity is unknown.

As already mentioned, and as highlighted in [98], face reconstruction is an ill-

posed problem which is highly artistic. The majority of methods within auto-
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matic forensic facial reconstruction share a general framework which consists

of finding the mapping between skulls and faces [15]. Independent models

of the face and the skull are constructed and the parameter mapping between

the two models is found from a small test set. In more recent work [85], two

individual PDMs were created from a large dataset of CT head scans and a lin-

ear mapping is found between the two. Similar methods have previously been

attempted with smaller datasets from various sources [17, 20, 21, 48, 70, 100].

The model mapping approach maps a skull to a single face and therefore does

not account for shape variance due to genetics and environmental factors such

as diet and health. Several approaches, however, suggest changing the facial

attributes in a final step to adjust for soft tissue variation due to age and BMI

differences [20, 71, 84].

Alternative simple methods place tissue-depth pins on a dry skull and de-

form a face-mesh according to the mean tissue-depth measures [14].

More recent approaches fit several local shape models to a skull and glue

them together into one joint face by using partial least squares regression to

find a smooth surface transition [19, 39]. In [68] they are working with im-

ages of skulls and try to identify the matching face from a larger set of un-

normalized facial photographs. The evaluation method here does also mimic

craniofacial superimposition by only using pure classification techniques and

without taking the soft-tissue variability into account.

As an alternative approach to traditional facial reconstruction, we have

shown how a combined face-skull-PDM can be constructed from independent

existing PDMs. By conditioning the combined model on the skull surface,

we obtain a full distribution of possible faces instead of a single face as in

traditional methods.

5.6.4 Discussion

In this section we presented an alternative usage of the probabilistic reg-

istration framework in order to combine two independent PDMs. The main

novelty of this approach is that it does not require a paired dataset of head im-

ages, but can construct possible face-skull pairs using readily available statis-
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tics about the soft tissue depth at individual landmarks. From a computational

point of view, our method works by sampling possible faces from a posterior

distribution using the MH algorithm. The generated faces for each skull are

then used to build the joint face-skull model using multiple imputation. We

showed how plausible face shapes can be generated which fit a given skull.

This is a task of great interest in forensics. The distribution of possible faces

that we obtain implies that current approaches of facial reconstruction, which

only predict a single face for a given skull, exclude a lot of important infor-

mation. As an application, we have shown the possibility to use our model for

model-based segmentation of the skull in MRIs. We believe, that our approach

of combining individual PDMs is very general and that the same principle can

be used to join other shape models, in order to obtain flexible shape priors of

different combined structures.

5.7 Conclusion

In this chapter, we have shown different applications for the probabilis-

tic registration framework P-GiNGR. The common characteristic about all the

experiments is the focus on partial data which is often the setting in medi-

cal image analysis. We have shown how P-GiNGR can be used to obtain the

MAP solution in a femur reconstruction challenge. We then showed the im-

portance of using soft correspondence to analyze partial data, especially when

the global frame of the structure is not known as was the case for the fe-

mur. We have shown an example of how the likelihood function in P-GiNGR

can be modified to account for the target surface not being a strict subset of

the reference which is needed for the independent point likelihood. We also

showed different applications of using P-GiNGR to create PDMs from partial

data using multiple-imputations. We showed how the PDMs can be created

purely from partial data, from data that has overlapping areas, or how a com-

bined model can be created from completely disjoint data. In the following

chapter, we discuss future research directions and what parts still need to be

implemented from a practical aspect.



6
Future Directions

In this chapter, we highlight future research directions and practical as-

pects of the P-GiNGR framework.

For GiNGR there is still more work to be conducted in converting ex-

isting non-rigid registration algorithms into GiNGR. In Section 3.3 we dis-

cussed related work which might be possible to use within GiNGR, such as

correspondence approximation methods and different kernel functions. Fur-

ther analysis would need to be conducted to find an optimal configuration that

works on a wide variety of applications. This would mean that the method

has to be efficient to compute if used in robotic applications such as SLAM

but at the same time precise enough to be used within medical image anal-

ysis. Another aspect of GiNGR is kernel design, where it is necessary with

an efficient kernel method for GPMMs which works on the surface instead of

Gaussian, b-spline, or similar kernels that compute the covariance based on

the Euclidean distance. When moving from GiNGR to P-GiNGR we intro-

duced the CP in Section 4.2.2, where the observation noise was manually set

to a simple anisotropic Gaussian noise, with a large uncertainty along the sur-

face and a small uncertainty in the normal direction of the surface. While this

method works well for the femur and the face, it might not work for structures

without large smooth regions. A more dynamic noise term would therefore
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be a good idea which not only looks at the correspondence distance between

the reference and the target, but also takes the surface curvature into account.

This could possibly be done by making the noise isotropic when the surface is

having large curvatures and anisotropic in large smooth areas.

In general, the above-mentioned research directions revolve around auto-

matic hyper-parameter setting such that the end-user can use it as a black-

box method. Another question is the practical aspect of using P-GiNGR in

a commercial application to compute registration uncertainty. In comparison

to GiNGR, with P-GiNGR we are approximating the posterior distribution by

sampling. We can analyze individual domains and see how many samples

might be sufficient. But it is difficult to define a limit that works for a broad

range of applications with the current configuration. This has the implication

that we theoretically will have to take infinitely many samples. Future research

directions could be on VBI methods to approximate the posterior distribution

instead of sampling methods.

The uncertainty estimation that we are able to compute with P-GiNGR can

be contributed to multiple factors. It would therefore be useful to divide the

uncertainty into how much is due to the unknown correspondence and how

much is due to the model approximation which might not be flexible enough

to explain parts of the target.

With P-GiNGR we are using the independent point evaluator likelihood

(Section 4.2). On a closer look, the independence assumption is obviously

flawed. As an example, we can discretize the surface such that the point dis-

tance is close to zero. However, the likelihood would still assume that two

points in such close proximity are independent. In Section 5.3 we showed

different practical solutions to the likelihood function. But a good likelihood

function for multiple domains, which also needs to be theoretically sounds,

needs to be found. Future research directions would therefore be on searching

for a better likelihood function, which ideally would take the point dependence

into account.
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6.1 Open Source Software

All of the experiments throughout this thesis have been conducted with the

open-source scalable image analysis and shape modeling library, Scalismo7.

Until now we have published code for an ICP version of the CP proposal8

together with [61]. We also published code to construct PDMs from partial

data9 together with [60]. What still needs to be done is combining it all into the

P-GiNGR software package to make it easily approachable for a wide range

of people. As an entry-level method, it could be possible to create P-GiNGR-

UI by utilizing Scalismo-UI10 and therefore make non-rigid registration even

easier to perform for non-technical people without coding knowledge.

7 scalismo.org/
8 github.com/unibas-gravis/icp-proposal
9 github.com/unibas-gravis/shape-priors-from-pieces
10 github.com/unibas-gravis/scalismo-ui

https://scalismo.org/
https://github.com/unibas-gravis/icp-proposal
https://github.com/unibas-gravis/shape-priors-from-pieces
https://github.com/unibas-gravis/scalismo-ui


7
Conclusion

In this thesis, we introduced P-GiNGR which is a generalized method for

probabilistic non-rigid surface and point-set registration. With P-GiNGR we

showed how to perform non-rigid registration without using hard correspon-

dence. Instead, the correspondence is described through a likelihood function.

We showed how different likelihood functions can be used such as indepen-

dent point evaluation, collective average, or a likelihood which takes the Haus-

dorff distance between surfaces into account. With GiNGR we showed how

non-rigid registration can clearly separate the prior deformation information

from the general registration algorithm using GPMMs and GPR.

We converted existing algorithms, such as ICP and CPD into GiNGR and

showed that the regularization hyper-parameters are converted to an easily un-

derstandable property, namely a Gaussian noise assumption of the estimated

correspondence pairs. Beyond comparing existing registration algorithms,

GiNGR can be used to easily switch between different methods during reg-

istration or to create methods that combine parts from existing algorithms.

The framework gives additional benefits such as a clear concept for including

expert-annotation, multi-resolution fitting for faster and more robust registra-

tion procedures, and the ability to use statistical deformation priors.

With P-GiNGR we can even make the iterations in existing registration
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algorithms stochastic in comparison to their deterministic nature. The prob-

abilistic interpretation is obtained with the MH algorithm and a specially de-

signed correspondence-proposal from which we are able to take informed

steps while keeping the convergence properties of the MH algorithm. In addi-

tion to making existing algorithms more robust with P-GiNGR, we also show

how the posterior distribution of registrations can be used to assess correspon-

dence uncertainty. Finally, we showed a wide variety of applications of using

P-GiNGR on analyzing partial data and how P-GiNGR can be used to create

PDMs from partial data.

With the modular design and open-source availability of P-GiNGR, we

hope to bring different non-rigid point-set and surface registration commu-

nities together to develop deformation priors and correspondence estimation

methods that work on a large variety of different domains.
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Derivation of ICP-T and ICP-A

A.1 ICP-T Full Derivation

The ICP-T minimization problem

argmin
Ũ

=

∥

∥

∥

∥

∥

[

λsB

WI

]

Ũ −

[
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WÛ

]
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2

F

(A.1)

To simplify the derivation, at first we setW = I and λs = 1, so the minimiza-

tion instead becomes

argmin
Ũ

=

∥

∥

∥

∥

∥

[

B

I

]

Ũ −

[

0

Û

]∥

∥

∥

∥

∥

2

F

(A.2)

Then we expand it into the least square solution:

Ũ = (BTB + I)−1Û (A.3)

Here we recognize that L = BTB is the Laplacian matrix and Û = Xc −XR.

We now make use of the Woodbury matrix identity

(A+ UCVT )−1 = A−1 −A−1U(C−1 + VTA−1U)−1VTA−1. (A.4)

We set A−1 = L† = K, and U , C, and V to identity matrices. Note, the

Laplacian matrix L does not have full rank and therefore we use the pseudo
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inverse. We can rewrite

Ũ = (L+ I)−1Û

= (K −K(K + I)−1K)Û

The above equation is then set equal to the mean of GPR (eq. 8) when choos-

ing the inverse Laplacian as the kernel. Then we can show that under these

assumptions u = Û holds, and hence both methods lead to the same predic-

tion.

K(K + I)−1u = (K −K(K + I)−1K)Û (A.5)

Multiply with (K + I)K−1 on both sides

u = (K + I)K−1(K −K(K + I)−1K)Û (A.6)

u = ((K + I)−K)Û

= Û

which means that

Ũ = K(K + I)−1Û . (A.7)

A.1.1 Inclusion of Weighting Matrix W, λ2
s

and σ2

We now focus on what theW matrix, stiffness λs and the noise assumption

σ2 variables change in the derivation. So we start out with the minimization

problem in Eq. (A.1)

Ũ = (L+ λ2sIW
T IW )−1WT IWÛ

= (K −KWT (σ2I +WKWT )−1WK)WÛ

Continuing the derivation similar to Eq. (A.5), this time equating to the GPR:

KWT (σ2 +WKWT )−1Wu extended with W , leads to

KWT (σ2I +WKWT )−1Wu =

( 1

λ2s
K −

1

λ2s
KW (I +

1

λ2s
WKW )−1 1

λ2s
WKW

)

WÛ
(A.8)
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Using (I + 1
λ2
s

WKW )−1 = λ2s(λ
2
sI +WKW )−1 and also W = WW =

WT , as well as assuming λs = σ, the same approach as in Eq. (A.6) results in

Wu = (σ2I +WKW )WK
( 1

λ2s
K−

1

λ2s
KW (λ2sI +WKW )−1WKW

)

WÛ

=
( 1

λ2s
(σ2I +WKW )W −

1

λ2s
WKW

)

WÛ

=WÛ

(A.9)

Therefore, the stiffness term λs and the uncertainty assumption σ are describ-

ing the same even when including W . When comparing this to (eq. 7), we

see that WKWT is the kernel function, but with all the unknown items re-

moved. The same goes for Û which now only contains the points that we

have observed values for, the rest will be 0. Likewise, KW is the kernel ma-

trix between all pairs of predicted points and the observed points, where the

correlation between predicted points and unobserved points has been set to 0.

A.2 ICP-A Full Derivation

The ICP-A minimization problem

argmin
M

=

∥

∥

∥

∥

∥

[

λsB ⊗G

WD

]

M−

[

0

WXc

]∥

∥

∥

∥

∥

2

F

(A.10)

with G being the diag([1, 1, 1, γ]T ) and γ depending on the units of the data.

Again, we begin with the ICP-A energy optimization terms expanded to the

least square solution. For simplicity we have set W = I and λs = 1. The

inclusion ofW and λs leads to the same outcome as shown in Appendix A.1.1.

M =(BTB ⊗GTG+DTD)−1DTXc (A.11)

=(L+DTD)−1DTXc (A.12)

We now make use of the Woodbury matrix identity Eq. (A.4) and set U = DT ,

V = D, C = I and A−1 = L† = K.

M = (KDT −KDT (I +DKDT )−1DKDT )Xc (A.13)
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AsM is the stacked affine transformation matrices per point, we then multiply

the solution with D to get the updated point locations:

X̂R = (DKDT −DKDT (I +DKDT )−1DKDT )Xc (A.14)

Setting K = DKDT leads to

X̂R = (K −K(I +K)−1K)Xc (A.15)

Similar to in the ICP-T derivation, we set the predicted point locations X̂R

equal to the GPR mean (see eq. 8) usingK as the kernel. Then we solve for the

observation field Û . Notice, in the ICP-A formulation, the updated locations

of the points are predicted directly and not a deformation field Ũ that warps

the reference. We can get the updated point locations in the standard GPMM

formulation by adding the predicted mean deformation field to the reference

point locations XR,

(K −K(I +K)−1K)Xc = XR +K(I +K)−1Û . (A.16)

We now isolate Û by multiplying both sides with (K + I)K−1

(((K + I)K−1)(K −K(I +K)−1K))Xc = (K + I)K−1XR + Û (A.17)

((K + I)−K)Xc = (XR +K−1XR) + Û (A.18)

Xc − (XR +K−1XR) = Û (A.19)

The additional termK−1XR (in comparison to ICP-T) is to adjust for the ICP-

A algorithm defining its closest point deformations as affine transformations.



B
GiNGR vs P-GiNGR Plots

Complete individual results for comparison of GiNGR and P-GiNGR us-

ing either ICP or CPD to estimate correspondence in each iteration. Each

boxplot in Fig. B.1, Fig. B.2, Fig. B.3 and Fig. B.4 is estimated based on 100

random initialization of the GPMM model parameters α. Notice how the fig-

ures both show the Euclidean distance and the Hausdorff distance which are

both in general better when using P-GiNGR instead of the same configuration

(ICP or CPD and noise model) with GiNGR.
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Figure B.1: GiNGR vs P-GiNGR across 50 target femurs where the GPMM
is initialized with 100 random shape coefficients.
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Figure B.2: GiNGR vs P-GiNGR across 50 target femurs where the GPMM
is initialized with 100 random shape coefficients.
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Figure B.3: GiNGR vs P-GiNGR across 50 target femurs where the GPMM
is initialized with 100 random shape coefficients.
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Figure B.4: GiNGR vs P-GiNGR across 50 target femurs where the GPMM
is initialized with 100 random shape coefficients.
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